Abstract
Molecular docking is a complex optimization problem aimed at predicting the position of a ligand molecule in the active site of a receptor with the lowest binding energy. This problem can be formulated as a bi-objective optimization problem by minimizing the binding energy and the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands. In this context, the SMPSO multi-objective swarm-intelligence algorithm has shown a remarkable performance. SMPSO is characterized by having an external archive used to store the non-dominated solutions and also as the basis of the leader selection strategy. In this paper, we analyze several SMPSO variants based on different archiving strategies in the scope of a benchmark of molecular docking instances. Our study reveals that the SMPSOhv, which uses an hypervolume contribution based archive, shows the overall best performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In URL: http://www.rcsb.org/pdb/home/home.do.
- 2.
References
Coello, C.A., Toscano, G., Lechuga, M.S.: Handling Multiple objectives with Particle Swarm Optimization. IEEE Trans. Evol. Comp. 8(3), 3 (2004)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Durillo, J.J., García-Nieto, J., Nebro, A.J., Coello, C.A.C., Luna, F., Alba, E.: Multi-objective particle swarm optimizers: an experimental comparison. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, pp. 495–509. Springer, Heidelberg (2009)
García-Godoy, M.J., López-Camacho, E., García Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: Solving molecular docking problems with multi-objective metaheuristics. Molecules 20(6), 10154–10183 (2015)
Gu, J., Yang, X., Kang, L., Wu, J., Wang, X.: MoDock: a multi-objective strategy improves the accuracy for molecular docking. Algs. Mol. Bio. 10, 8 (2015)
Janson, S., Merkle, D., Middendorf, M.: Molecular docking with multi-objective particle swarm optimization. Appl. Soft Comput. 8(1), 666–675 (2008)
López-Camacho, E., García-Godoy, M.J., Nebro, A.J., Aldana-Montes, J.F.: jMetalCpp: optimizing molecular docking problems with a C++ metaheuristic framework. Bioinformatics 30(3), 437–438 (2014)
López-Camacho, E., García-Godoy, M.J., García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: Solving molecular flexible docking problems with metaheuristics: a comparative study. Appl. Soft Comput. 28, 379–393 (2015)
López-Camacho, E., García-Godoy, M.J., García-Nieto, J., Nebro, A.J., Aldana-Montes, J.F.: A new multi-objective approach for molecular docking based on RMSD and binding energy. In: 3rd International Conference on Algorithm for Computational Biology (2016, in-Press)
Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J.: AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009)
Nebro, A., Durillo, J., Garcia-Nieto, J., Coello Coello, C.A., Luna, F., Alba, E.: SMPSO: a new PSO-based metaheuristic for multi-objective optimization. In: IEEE Symposium on Computational Intelligence in Multi-criteria Decision-Making, pp. 66–73 (2009)
Nebro, A., Durillo, J., Coello Coello, C.A.: Analysis of leader selection strategies in a MOPSO. In: Proceedings of IEEE Congress on Evolutionary Computation (CEC), pp. 3153–3160, June 2013
Norgan, A.P., Coffman, P.K., Kocher, J.P.A., Katzmann, D.J., Sosa, C.P.: Multilevel parallelization of AutoDock 4.2. J. Cheminform. 3(1), 12 (2011)
Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and \(\epsilon \)-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005)
Sandoval-Perez, A., Becerra, D., Vanegas, D., Restrepo-Montoya, D., Nino, F.: A multi-objective optimization energy approach to predict the ligand conformation in a docking process. In: Krawiec, K., Moraglio, A., Hu, T., Etaner-Uyar, A.Ş., Hu, B. (eds.) EuroGP 2013. LNCS, vol. 7831, pp. 181–192. Springer, Heidelberg (2013)
Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. Chapman & Hall/CRC, Boca Raton (2007)
Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comp. 11(6), 712–731 (2007)
Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comp. 3(4), 257–271 (1999)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comp. 7(2), 117–132 (2003)
Acknowledgments
This work is partially funded by Grants TIN2011-25840 (Ministerio de Ciencia e Innovación) and P11-TIC-7529 and P12-TIC-1519 (Plan Andaluz I+D+I). This article is based upon work from COST Action CA15140, supported by COST (European Cooperation in Science and Technology).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
García-Nieto, J., López-Camacho, E., Godoy, M.J.G., Nebro, A.J., Durillo, J.J., Aldana-Montes, J.F. (2016). A Study of Archiving Strategies in Multi-objective PSO for Molecular Docking. In: Dorigo, M., et al. Swarm Intelligence. ANTS 2016. Lecture Notes in Computer Science(), vol 9882. Springer, Cham. https://doi.org/10.1007/978-3-319-44427-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-44427-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44426-0
Online ISBN: 978-3-319-44427-7
eBook Packages: Computer ScienceComputer Science (R0)