Abstract
Recent advances in knowledge harvesting have enabled us to collect large amounts of facts about entities from Web sources. A good portion of these facts have a temporal scope that, for example, allows us to concisely capture a person’s biography. However, raw sets of facts are not well suited for presentation to human end users. This paper develops a novel abstraction-based method to summarize a set of facts into natural-language sentences. Our method distills temporal knowledge from Web documents and generates a concise summary according to a particular user’s interest, such as, for example, a soccer player’s career. Our experiments are conducted on biography-style Wikipedia pages, and the results demonstrate the good performance of our system in comparison to existing text-summarization methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arora, R., Ravindran, B.: Latent Dirichlet allocation based multi-document summarization. In: Second Workshop on Analytics for Noisy Unstructured Text Data (AND), pp. 91–97. ACM (2008)
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)
Bing, L., Li, P., Liao, Y., Lam, W., Guo, W., Passonneau, R.J.: Abstractive multi-document summarization via phrase selection and merging. In: ACL, pp. 1587–1597 (2015)
Carlson, A., Betteridge, J., Wang, R.C., Hruschka Jr., E.R., Mitchell, T.M.: Coupled semi-supervised learning for information extraction. In: WSDM (2010)
Chhabra, S., Bedathur, S.: Towards generating text summaries for entity chains. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 136–147. Springer, Heidelberg (2014)
Conroy, J., O’leary, D.: Text summarization via hidden Markov models. In: SIGIR, pp. 406–407. ACM (2001)
Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: EMNLP, Edinburgh, Scotland, UK, pp. 1535–1545, 27–31 July 2011
Filippova, K.: Multi-sentence compression: finding shortest paths in word graphs. In: ACL, pp. 322–330 (2010)
Ganesan, K., Zhai, C., Han, J.: Opinosis: a graph-based approach to abstractive summarization of highly redundant opinions. In: ACL, pp. 340–348 (2010)
Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Thater, S., Weikum, G.: Robust disambiguation of named entities in text. In: EMNLP, pp. 782–792 (2011)
Hong, K., Marcus, M., Nenkova, A.: System combination for multi-document summarization. In: EMNLP, pp. 107–117 (2015)
Knight, K., Marcu, D.: Summarization beyond sentence extraction: a probabilistic approach to sentence compression. Artif. Intell. 139(1), 91–107 (2002)
Li, L., Zhou, K., Xue, G., Zha, H., Yu, Y.: Enhancing diversity, coverage and balance for summarization through structure learning. In: WWW, pp. 71–80. ACM (2009)
Ling, X., Weld, D.S.: Temporal information extraction. In: AAAI, pp. 1385–1390, 11–15 July 2010
Liu, F., Flanigan, J., Thomson, S., Sadeh, N.M., Smith, N.A.: Toward abstractive summarization using semantic representations. In: NAACL, pp. 1077–1086 (2015)
Mani, I.: Summarization evaluation: an overview (2001)
McClosky, D., Manning, C.D.: Learning constraints for consistent timeline extraction. In: EMNLP-CoNLL, pp. 873–882 (2012)
McDonald, D., Pustejovsky, J.: Natural language generation. In: IJCAI. Citeseer (1986)
Radev, D., Allison, T., Blair-Goldensohn, S., Blitzer, J., Celebi, A., Dimitrov, S., Drabek, E., Hakim, A., Lam, W., Liu, D., et al.: MEAD-a platform for multidocument multilingual text summarization. In: LREC, vol. 2004 (2004)
Schluter, N., Søgaard, A.: Unsupervised extractive summarization via coverage maximization with syntactic and semantic concepts. In: ACL, pp. 840–844 (2015)
Shen, D., Sun, J., Li, H., Yang, Q., Chen, Z.: Document summarization using conditional random fields. IJCAI 7, 2862–2867 (2007)
Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: WWW, pp. 697–706. ACM, New York (2007)
Sydow, M., Pikula, M., Schenkel, R.: The notion of diversity in graphical entity summarisation on semantic knowledge graphs. J. Intell. Inf. Syst. 41(2), 109–149 (2013)
Takaku, Y., Kaji, N., Yoshinaga, N., Toyoda, M.: Identifying constant and unique relations by using time-series text. In: EMNLP-CoNLL, pp. 883–892 (2012)
Talukdar, P.P., Crammer, K.: New regularized algorithms for transductive learning. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 442–457. Springer, Heidelberg (2009)
Talukdar, P.P., Wijaya, D., Mitchell, T.: Coupled temporal scoping of relational facts. In: WSDM. Association for Computing Machinery, Seattle, February 2012
Tylenda, T., Sozio, M., Weikum, G.: Einstein: physicist or vegetarian? Summarizing semantic type graphs for knowledge discovery. In: WWW (Companion Volume), pp. 273–276 (2011)
Wan, X., Yang, J.: Multi-document summarization using cluster-based link analysis. In: SIGIR, pp. 299–306. ACM (2008)
Wang, Y., Dylla, M., Spaniol, M., Weikum, G.: Coupling label propagation and constraints for temporal fact extraction. In: ACL, vol. 2, pp. 233–237 (2012)
Wang, Y., Yahya, M., Theobald, M.: Time-aware reasoning in uncertain knowledge bases. In: MUD, pp. 51–65 (2010)
Wang, Y., Yang, B., Qu, L., Spaniol, M., Weikum, G.: Harvesting facts from textual web sources by constrained label propagation. In: CIKM, pp. 837–846 (2011)
Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence graph. In: WWW, pp. 707–716 (2007)
Acknowledgments
We thank the anonymous reviewers for their valuable comments. This project was sponsored by National Natural Science Foundation of China (No. 61503217), Shandong Provincial Natural Science Foundation of China (No. ZR2014FP002), and The Fundamental Research Funds of Shandong University (Nos. 2014TB005, 2014JC001).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Wang, Y., Ren, Z., Theobald, M., Dylla, M., de Melo, G. (2016). Summary Generation for Temporal Extractions. In: Hartmann, S., Ma, H. (eds) Database and Expert Systems Applications. DEXA 2016. Lecture Notes in Computer Science(), vol 9827. Springer, Cham. https://doi.org/10.1007/978-3-319-44403-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-44403-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-44402-4
Online ISBN: 978-3-319-44403-1
eBook Packages: Computer ScienceComputer Science (R0)