Nothing Special   »   [go: up one dir, main page]

Skip to main content

Summary Generation for Temporal Extractions

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9827))

Included in the following conference series:

  • 867 Accesses

Abstract

Recent advances in knowledge harvesting have enabled us to collect large amounts of facts about entities from Web sources. A good portion of these facts have a temporal scope that, for example, allows us to concisely capture a person’s biography. However, raw sets of facts are not well suited for presentation to human end users. This paper develops a novel abstraction-based method to summarize a set of facts into natural-language sentences. Our method distills temporal knowledge from Web documents and generates a concise summary according to a particular user’s interest, such as, for example, a soccer player’s career. Our experiments are conducted on biography-style Wikipedia pages, and the results demonstrate the good performance of our system in comparison to existing text-summarization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://en.wikipedia.org/wiki/FIFA_100/.

  2. 2.

    http://articles.cnn.com/2003-05-06/entertainment/movie.poll.100_1_star-movies-godfather?_s= PM:SHOWBIZ/.

References

  1. Arora, R., Ravindran, B.: Latent Dirichlet allocation based multi-document summarization. In: Second Workshop on Analytics for Noisy Unstructured Text Data (AND), pp. 91–97. ACM (2008)

    Google Scholar 

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Bing, L., Li, P., Liao, Y., Lam, W., Guo, W., Passonneau, R.J.: Abstractive multi-document summarization via phrase selection and merging. In: ACL, pp. 1587–1597 (2015)

    Google Scholar 

  4. Carlson, A., Betteridge, J., Wang, R.C., Hruschka Jr., E.R., Mitchell, T.M.: Coupled semi-supervised learning for information extraction. In: WSDM (2010)

    Google Scholar 

  5. Chhabra, S., Bedathur, S.: Towards generating text summaries for entity chains. In: de Rijke, M., Kenter, T., de Vries, A.P., Zhai, C.X., de Jong, F., Radinsky, K., Hofmann, K. (eds.) ECIR 2014. LNCS, vol. 8416, pp. 136–147. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  6. Conroy, J., O’leary, D.: Text summarization via hidden Markov models. In: SIGIR, pp. 406–407. ACM (2001)

    Google Scholar 

  7. Fader, A., Soderland, S., Etzioni, O.: Identifying relations for open information extraction. In: EMNLP, Edinburgh, Scotland, UK, pp. 1535–1545, 27–31 July 2011

    Google Scholar 

  8. Filippova, K.: Multi-sentence compression: finding shortest paths in word graphs. In: ACL, pp. 322–330 (2010)

    Google Scholar 

  9. Ganesan, K., Zhai, C., Han, J.: Opinosis: a graph-based approach to abstractive summarization of highly redundant opinions. In: ACL, pp. 340–348 (2010)

    Google Scholar 

  10. Hoffart, J., Yosef, M.A., Bordino, I., Fürstenau, H., Pinkal, M., Spaniol, M., Thater, S., Weikum, G.: Robust disambiguation of named entities in text. In: EMNLP, pp. 782–792 (2011)

    Google Scholar 

  11. Hong, K., Marcus, M., Nenkova, A.: System combination for multi-document summarization. In: EMNLP, pp. 107–117 (2015)

    Google Scholar 

  12. Knight, K., Marcu, D.: Summarization beyond sentence extraction: a probabilistic approach to sentence compression. Artif. Intell. 139(1), 91–107 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, L., Zhou, K., Xue, G., Zha, H., Yu, Y.: Enhancing diversity, coverage and balance for summarization through structure learning. In: WWW, pp. 71–80. ACM (2009)

    Google Scholar 

  14. Ling, X., Weld, D.S.: Temporal information extraction. In: AAAI, pp. 1385–1390, 11–15 July 2010

    Google Scholar 

  15. Liu, F., Flanigan, J., Thomson, S., Sadeh, N.M., Smith, N.A.: Toward abstractive summarization using semantic representations. In: NAACL, pp. 1077–1086 (2015)

    Google Scholar 

  16. Mani, I.: Summarization evaluation: an overview (2001)

    Google Scholar 

  17. McClosky, D., Manning, C.D.: Learning constraints for consistent timeline extraction. In: EMNLP-CoNLL, pp. 873–882 (2012)

    Google Scholar 

  18. McDonald, D., Pustejovsky, J.: Natural language generation. In: IJCAI. Citeseer (1986)

    Google Scholar 

  19. Radev, D., Allison, T., Blair-Goldensohn, S., Blitzer, J., Celebi, A., Dimitrov, S., Drabek, E., Hakim, A., Lam, W., Liu, D., et al.: MEAD-a platform for multidocument multilingual text summarization. In: LREC, vol. 2004 (2004)

    Google Scholar 

  20. Schluter, N., Søgaard, A.: Unsupervised extractive summarization via coverage maximization with syntactic and semantic concepts. In: ACL, pp. 840–844 (2015)

    Google Scholar 

  21. Shen, D., Sun, J., Li, H., Yang, Q., Chen, Z.: Document summarization using conditional random fields. IJCAI 7, 2862–2867 (2007)

    Google Scholar 

  22. Suchanek, F.M., Kasneci, G., Weikum, G.: YAGO: a core of semantic knowledge. In: WWW, pp. 697–706. ACM, New York (2007)

    Google Scholar 

  23. Sydow, M., Pikula, M., Schenkel, R.: The notion of diversity in graphical entity summarisation on semantic knowledge graphs. J. Intell. Inf. Syst. 41(2), 109–149 (2013)

    Article  Google Scholar 

  24. Takaku, Y., Kaji, N., Yoshinaga, N., Toyoda, M.: Identifying constant and unique relations by using time-series text. In: EMNLP-CoNLL, pp. 883–892 (2012)

    Google Scholar 

  25. Talukdar, P.P., Crammer, K.: New regularized algorithms for transductive learning. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009, Part II. LNCS, vol. 5782, pp. 442–457. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Talukdar, P.P., Wijaya, D., Mitchell, T.: Coupled temporal scoping of relational facts. In: WSDM. Association for Computing Machinery, Seattle, February 2012

    Google Scholar 

  27. Tylenda, T., Sozio, M., Weikum, G.: Einstein: physicist or vegetarian? Summarizing semantic type graphs for knowledge discovery. In: WWW (Companion Volume), pp. 273–276 (2011)

    Google Scholar 

  28. Wan, X., Yang, J.: Multi-document summarization using cluster-based link analysis. In: SIGIR, pp. 299–306. ACM (2008)

    Google Scholar 

  29. Wang, Y., Dylla, M., Spaniol, M., Weikum, G.: Coupling label propagation and constraints for temporal fact extraction. In: ACL, vol. 2, pp. 233–237 (2012)

    Google Scholar 

  30. Wang, Y., Yahya, M., Theobald, M.: Time-aware reasoning in uncertain knowledge bases. In: MUD, pp. 51–65 (2010)

    Google Scholar 

  31. Wang, Y., Yang, B., Qu, L., Spaniol, M., Weikum, G.: Harvesting facts from textual web sources by constrained label propagation. In: CIKM, pp. 837–846 (2011)

    Google Scholar 

  32. Zhang, X., Cheng, G., Qu, Y.: Ontology summarization based on RDF sentence graph. In: WWW, pp. 707–716 (2007)

    Google Scholar 

Download references

Acknowledgments

We thank the anonymous reviewers for their valuable comments. This project was sponsored by National Natural Science Foundation of China (No. 61503217), Shandong Provincial Natural Science Foundation of China (No. ZR2014FP002), and The Fundamental Research Funds of Shandong University (Nos. 2014TB005, 2014JC001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yafang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Y., Ren, Z., Theobald, M., Dylla, M., de Melo, G. (2016). Summary Generation for Temporal Extractions. In: Hartmann, S., Ma, H. (eds) Database and Expert Systems Applications. DEXA 2016. Lecture Notes in Computer Science(), vol 9827. Springer, Cham. https://doi.org/10.1007/978-3-319-44403-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44403-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44402-4

  • Online ISBN: 978-3-319-44403-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics