Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-level Big Data Content Services for Mental Health Care

  • Chapter
  • First Online:
Wisdom Web of Things

Abstract

Systematic brain informatics studies on mental health care produce various health big data of mental disorders and bring new requirements on the data acquisition and computing, from the data level to the information, knowledge and wisdom levels. Aiming at these challenges, this chapter proposes a brain and health big data center. A global content integrating mechanism and a content-oriented cloud service architecture are developed. The illustrative example demonstrates significance and usefulness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Skowron et al. proposed “Wisdom = Interactions + Adaptive Judgement + Knowledge”. In the WaaS architecture, all of big data, from data to information and knowledge, are data resources for bringing “Wisdom”. Hence, we change “Knowledge” to “Data Contents” in this study.

References

  1. M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A. Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, M. Zaharia, Above the Clouds: A Berkeley View of Cloud Computing (Technical report, EECS Department, University of California, Berkeley, 2009)

    Google Scholar 

  2. J.M. Bower, H. Bolouri (eds.), Computational Modeling of Genetic and Biochemical Networks (MIT Press, Cambridge, MA, 2001)

    Google Scholar 

  3. BrainMap, http://brainmap.org

  4. H. Chaouchi, The Internet of Things-connecting Objects to the Web (ISTE Ltd., Wiley, New York, 2010)

    Google Scholar 

  5. J.H. Chen, N. Zhong, Data-brain modeling based on brain informatics methodology, in Proceedings of 2008 IEEE/WIC/ACM International Conference on Web Intelligence (WI’08) (2008), pp. 41–47

    Google Scholar 

  6. J.H. Chen, N. Zhong, Data-brain modeling for systematic brain informatics, in Proceedings of 2009 International Conference on Brain Informatics (BI 2009) (2009), pp. 182–193

    Google Scholar 

  7. J.H. Chen, N. Zhong, Toward the data-brain driven systematic brain data analysis. IEEE Trans. Syst. Man Cybernet. Syst. 43(1), 222–228 (2013)

    Article  MathSciNet  Google Scholar 

  8. J.H. Chen, J.H. Ma, N. Zhong, Y.Y. Yao, J.M. Liu, R.H. Huang, W.B. Li, Z.S. Huang, Y. Gao, J.P. Cao, WaaS-wisdom as a service. IEEE Intell. Syst. 29(6), 2–9 (2014)

    Article  Google Scholar 

  9. C.A. Cocosco, V. Kollokian, R.K.S. Kwan, A.C. Evans, BrainWeb: online interface to a 3D MRI simulated brain database. NeuroImage 5(4, part 2/4), S425 (1997)

    Google Scholar 

  10. O. Cure, On the design of a self-medication web application built on linked open data. J. Web Sem. 24, 27–32 (2014)

    Article  Google Scholar 

  11. T. Dillon, A. Talevski, V. Potdar, E. Chang, Web of things as a framework for ubiquitous intelligence and computing, in Proceedings of the 6th International Conference on Ubiquitous Intelligence and Computing (2009), pp. 1–10

    Google Scholar 

  12. P.L. Elkin, S.H. Brown, C.S. Husser, B.A. Bauer, D. Wahner-Roedler, S.T. Rosenbloom, T. Speroff, Evaluation of the content coverage of SNOMED CT: ability of SNOMED clinical terms to represent clinical problem lists. Mayo Clin. Proc. 81(6), 741–748 (2006)

    Article  Google Scholar 

  13. J. Han, J.H. Chen, H. Zhong, N. Zhong, A brain informatics research recommendation system, in Proceedings of the 2014 International Conference on Brain Informatics and Health (BIH 2014) (Springer, LNAI 8609, 2014), pp. 208–217

    Google Scholar 

  14. B. Hayes, Cloud computing. Commun. ACM 51(7), 9–11 (2008)

    Article  Google Scholar 

  15. J.D. Van Horn, A.W. Toga, Is it time to re-prioritize neuroimaging databases and digital repositories? NeuroImage 47(4), 1720–1734 (2009)

    Article  Google Scholar 

  16. D. Howe, M. Costanzo, P. Fey, T. Gojobori, L. Hannick, W. Hide, D.P. Hill, R. Kania, M. Schaeffer, S. St. Pierre, S. Twigger, O. White, S.Y. Rhee, Big data: the future of biocuration. Nature 455, 47–50 (2008)

    Google Scholar 

  17. M. Hunter, R.L.L. Smith, W. Hyslop, O.A. Rosso, R. Gerlach, J.A.P. Rostas, D.B. Williams, F. Henskens, The Australian EEG database. Clin. EEG Neurosci. 36(2), 76–81 (2005)

    Article  Google Scholar 

  18. A. Jankowski, A. Skowron, and R.W. Swiniarski, Interactive rough-granular computing in wisdom technology, in Proceedings of 2013 International Conference on Active Media Technology (AMT 2013) (2013), pp. 1–13

    Google Scholar 

  19. P.D. Kaur, I. Chana, Cloud based intelligent system for delivering health care as a service. Comput. Methods Prog. Biomed. 113(1), 346–359 (2014)

    Article  Google Scholar 

  20. C. Knox, V. Law, T. Jewison, P. Liu, S. Ly, A. Frolkis, A. Pon, K. Banco, C. Mak, V. Neveu, Y. Djoumbou, R. Eisner, A.C. Guo, D.S. Wishart, DrugBank 3.0: a comprehensive resource for omics research on drugs. Nucleic Acids Res. 39(suppl 1), D1035–D1041 (2011)

    Article  Google Scholar 

  21. Z.Z. Liao, H.Y. Zhou, C. Li, J. Zhou, Y.L. Qin, Y. Feng, L. Feng, G. Wang, N. Zhong, The change of resting EEG in depressive disorders, in Proceedings of the 2013 International Conference on Brain and Health Informatics (Springer, LNAI 8211, 2013), pp. 52–61

    Google Scholar 

  22. P.F. Liu, M. Li, S.F. Lu, J. Wang, Y. Zhou, X.Y. Su, N. Zhong, Impairments of working memory for object-location associations in depression. Appl. Mech. Mater. 590, 828–832 (2014)

    Article  Google Scholar 

  23. N. Mazzocca, R.A. Micillo, S. Venticinque, Automatic and dynamic composition of web services using ontologies, in Proceedings of 5th Atlantic Web Intelligence Conference (AWIC 2007) (2007), pp. 230–235

    Google Scholar 

  24. NIF. http://nif.nih.gov/

  25. NMDB. http://microcircuit.epfl.ch

  26. ORDB. http://senselab.med.yale.edu/ORDB/default.asp

  27. M. Paolucci, T. Kawamura, T.R. Payne, K. Sycara, Semantic matching of web services capabilities. Pro. ISWC 2002, 333–347 (2002)

    MATH  Google Scholar 

  28. http://pubmed.gov/

  29. C.P. Shen, W.Z. Zhou, F.S. Lin, H.Y. Sung, Y.Y. Lam, W. Chen, J.W. Lin, M.K. Pan, M.J. Chiu, F.P. Lai, Epilepsy analytic system with cloud computing, in Proceedings of 35th Annual International Conference of the IEEE EMBS (2013), pp. 1644–1647

    Google Scholar 

  30. Y.L. Simmhan, B. Plale, D. Gannon, A survey of data provenance in e-science. Sigmod Record 34(3), 31–36 (2005)

    Article  Google Scholar 

  31. A. Skowron, M. Szczuka, Toward interactive computations: a rough-granular approach. Adv. Mach. Learn. II, SCI 263, 23–42 (2010)

    Google Scholar 

  32. A. Skowron, A. Jankowski, Interactive computations: toward risk management in interactive intelligent systems. Nat. Comput. (2015). doi:10.1007/s11047-015-9486-5

    MathSciNet  Google Scholar 

  33. V. Stirbu, Towards a RESTful plug and play experience in the web of things, in Proceedings of the 2008 IEEE International Conference on Semantic Computing (2008), pp. 512–517

    Google Scholar 

  34. J.M. Tenenbaum, J. Shrager, Cancer: a computational disease that AI can cure. AI Mag. 32(2), 14–26 (2011)

    Google Scholar 

  35. P.E. Turkeltaub, G.F. Eden, K.M. Jones, T.A. Zeffiro, Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16, 765–780

    Google Scholar 

  36. J.D. Van Horn, J.S. Grethe, P. Kostelec, J.B. Woodward, J.A. Aslam, D. Rus, D. Rockmore, M.S. Gazzaniga, The functional magnetic resonance imaging data center (fMRIDC): the challenges and rewards of large-scale databasing of neuroimaging studies. Philos. Trans. R. Soc. B: Biol. Sci. 356(1412), 1323–1339 (2001)

    Article  Google Scholar 

  37. E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer, M. Balazinska, G. Borriello, Building the internet of things using RFID. IEEE Internet Comput. 33(3), 48–55 (2009)

    Article  Google Scholar 

  38. Y.Y. Yao, N. Zhong, J. Liu, S. Ohsuga, Web intelligence (WI): research challenges and trends in the new information age, in N. Zhong, Y.Y. Yao, J. Liu, S. Ohsuga (eds.) Web Intelligence: Research and Development (Springer, LNAI 2198, 2001), pp. 1–17

    Google Scholar 

  39. Y. Zeng, Y.Y. Yao, N. Zhong, Dblp-sse: a dblp search support engine, in The 2009 IEEE/WIC/ACM International Conference on Web Intelligence(WI’09) (2009), pp. 626–630

    Google Scholar 

  40. Y. Zeng, N. Zhong, Y. Wang, Y.L. Qin, Z.S. Huang, H.Y. Zhou, User-centric query refinement and processing using granularity based strategies. Knowl. Inf. Syst. 27(3), 419–450 (2010)

    Article  Google Scholar 

  41. N. Zhong, J.M. Liu, Y.Y. Yao, S. Ohsuga, Web intelligence (WI), in Proceedings of the 24th IEEE Computer Society International Computer Software and Applications Conference (COMPSAC 2000) (2000), pp. 469–470

    Google Scholar 

  42. N. Zhong, Impending brain informatics research from web intelligence perspective. Int. J. Inf. Technol. Decis. Mak. 5(4), 713–727 (2006)

    Article  Google Scholar 

  43. N. Zhong, J.M. Liu, Y.Y. Yao, J.L. Wu, S.F. Lu, Y.L. Qin, K.C. Li, B. Wah, Web intelligence meets brain informatics, in Proceedings of the first WICI international workshop on web intelligence meets brain informatics (WImBI 2006) (2006), pp. 1–31

    Google Scholar 

  44. N. Zhong, S. Motomura, Agent-enriched data mining: a case study in brain informatics. IEEE Intell. Syst. 24(3), 38–45 (2009)

    Article  Google Scholar 

  45. N. Zhong, J.H. Chen, Constructing a new-style conceptual model of brain data for systematic brain informatics. IEEE Trans. Knowl. Data Eng. 24(12), 2127–2142 (2012)

    Article  MathSciNet  Google Scholar 

  46. N. Zhong, J.H. Ma, R.H. Huang, J.M. Liu, Y.Y. Yao, Y.X. Zhang, J.H. Chen, Research challenges and perspectives on wisdom web of things (W2T). J. Supercomput. 64(3), 862–882 (2013)

    Article  Google Scholar 

  47. H. Zhong, J.H. Chen, T. Kotake, J. Han, N. Zhong, Z.S. Huang, Developing a brain informatics provenance model, in Proceedings of the 2013 International Conference on Brain and Health Informatics (BHI 2013) (Springer, LNAI 8211, 2013), pp. 439–449

    Google Scholar 

  48. H. Zhong, N. Zhong, J.H. Chen, J. Han, Document selection for the data-brain ontology and related information. J. Guangxi Normal Univ. (Natural Science Edition) 32(4), 45–51 (2014)

    Google Scholar 

Download references

Acknowledgments

The work is supported by National Basic Research Program of China (2014CB744600), China Postdoctoral Science Foundation (2013M540096), International Science & Technology Cooperation Program of China (2013DFA32180), National Natural Science Foundation of China (61272345), Research Supported by the CAS/SAFEA International Partnership Program for Creative Research Teams, Open Foundation of Key Laboratory of Multimedia and Intelligent Software (Beijing University of Technology), Beijing, the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (25330270), and Support Center for Advanced Telecommunications Technology Research, Foundation (SCAT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, J. et al. (2016). Multi-level Big Data Content Services for Mental Health Care. In: Zhong, N., Ma, J., Liu, J., Huang, R., Tao, X. (eds) Wisdom Web of Things. Web Information Systems Engineering and Internet Technologies Book Series. Springer, Cham. https://doi.org/10.1007/978-3-319-44198-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44198-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44196-2

  • Online ISBN: 978-3-319-44198-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics