Nothing Special   »   [go: up one dir, main page]

Skip to main content

On CNF Encodings of Decision Diagrams

  • Conference paper
  • First Online:
Integration of AI and OR Techniques in Constraint Programming (CPAIOR 2016)

Abstract

Decisions diagrams such as Binary Decision Diagrams (BDDs), Multi-valued Decision Diagrams (MDDs) and Negation Normal Forms (NNFs) provide succinct ways of representing Boolean and other finite functions. Hence they provide a powerful tool for modelling complex constraints in discrete satisfaction and optimization problems. Generic propagators for these global constraints exist, but they are complex and hard to implement. An alternative approach to making use of them for solving is to encode them to CNF, using SAT style solving technology to implement them efficiently. This may also have advantages since it is naturally incremental and exposes intermediate literals which may well be useful as search decisions for solving the problem.

In this paper we explore different ways that we can map these constraints to CNF, and the different properties these mappings maintain. Surprisingly the most used encoding of BDDs does not maintain domain consistency in arbitrary BDDs. We also consider the strength of propagation with respect to the intermediate literals. We give experiments which compare the performance of the different encodings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A longer version of this paper including proofs of all Theorems can be found at http://people.eng.unimelb.edu.au/pstuckey/mddenc.pdf.

  2. 2.

    Notice, however, that every result in this paper holds for non-reduced MDDs without long edges, and with some modifications of the rules the results also extend to non-reduced MDDs with long edges.

  3. 3.

    Benchmarks are available from http://people.eng.unimelb.edu.au/pstuckey/mddenc.tar.gz.

References

  1. Abío, I., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Stuckey, P.J.: To encode or to propagate? The best choice for each constraint in SAT. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 97–106. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Abío, I., Stuckey, P.J.: Encoding linear constraints into SAT. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 75–91. Springer, Heidelberg (2014)

    Google Scholar 

  3. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables into problems with boolean variables. In: SAT 2004 - The Seventh International Conference on Theory and Applications of Satisfiability Testing, Vancouver, BC, Canada, Online Proceedings, 10–13 May 2004

    Google Scholar 

  4. Bacchus, F.: GAC via unit propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 133–147. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Bessiere, C., Katsirelos, G., Narodytska, N., Walsh, T.: Circuit complexity and decompositions of global constraints. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI 2009, Pasadena, California, USA, 11–17 July 2009, pp. 412–418 (2009)

    Google Scholar 

  6. Bordeaux, L., Marques-Silva, J.: Knowledge compilation with empowerment. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G. (eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 612–624. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Chen, J.: A new SAT encoding of the at-most-one constraint. In: Proceedings of the Tenth International Workshop of Constraint Modelling and Reformulation (2010)

    Google Scholar 

  8. Cheng, K.C.K., Yap, R.H.C.: Maintaining generalized arc consistency on Ad Hoc r-Ary constraints. In: Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 509–523. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Chu, G.: Chuffed. https://github.com/geoffchu/chuffed

  10. Chu, G.G.: Improving combinatorial optimization. Ph.D. thesis, The University of Melbourne (2011)

    Google Scholar 

  11. Darwiche, A.: On the tractable counting of theory models and its application to truth maintenance and belief revision. J. Appl. Non-class. Logics 11(1–2), 11–34 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Darwiche, A.: SDD: a new canonical representation of propositional knowledge bases. In: IJCAI, pp. 819–826 (2011)

    Google Scholar 

  13. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into SAT. JSAT 2(1–4), 1–26 (2006)

    MATH  Google Scholar 

  14. Frisch, A.M., Peugniez, T.J., Doggett, A.J., Nightingale, P.: Solving non-boolean satisfiability problems with stochastic local search: a comparison of encodings. J. Autom. Reason. 35(1–3), 143–179 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Gange, G., Stuckey, P.J., Van Hentenryck, P.: Explaining propagators for edge-valued decision diagrams. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 340–355. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Gange, G., Stuckey, P.J., Lagoon, V.: Fast set bounds propagation using a BDD-SAT hybrid. J. Artif. Intell. Res. (JAIR) 38, 307–338 (2010)

    MathSciNet  MATH  Google Scholar 

  17. Gange, G., Stuckey, P.J., Szymanek, R.: MDD propagators with explanation. Constraints 16(4), 407–429 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gent, I.P.: Arc consistency in SAT. In: Proceedings of the 15th Eureopean Conference on Artificial Intelligence, ECAI 2002, Lyon, France, pp. 121–125, July 2002

    Google Scholar 

  19. Gwynne, M., Kullmann, O.: A framework for good SAT translations, with applications to CNF representations of XOR constraints. CoRR abs/1406.7398 (2014). http://arxiv.org/abs/1406.7398

  20. Jung, J.C., Barahona, P., Katsirelos, G., Walsh, T.: Two encodings of DNNF theories. In: ECAI 2008 Workshop on Inference Methods Based on Graphical Structures of Knowledge (2008)

    Google Scholar 

  21. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract davis-putnam-logemann-loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Plaisted, D.A., Greenbaum, S.: A structure-preserving clause form translation. J. Symb. Comput. 2(3), 293–304 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Quimper, C.-G., Walsh, T.: Decomposing global grammar constraints. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 590–604. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Srinivasan, A., Ham, T., Malik, S., Brayton, R.: Algorithms for discrete function manipulation. In: 1990 IEEE International Conference on Computer-Aided Design, ICCAD-90, Digest of Technical Papers, pp. 92–95 (1990)

    Google Scholar 

  25. Tseytin, G.: On the complexity of derivation in propositional calculus. Stud. Constr. Math. Math. Logic Part 2, 115–125 (1968)

    Google Scholar 

  26. del Val, A.: Tractable databases: how to make propositional unit resolution complete through compilation. In: Proceedings of the 4th International Conference on Principles of Knowledge Representation and Reasoning (KR 1994), Bonn, Germany, 24–27 May 1994, pp. 551–561 (1994)

    Google Scholar 

  27. Walsh, T.: SAT v CSP. In: Dechter, R. (ed.) CP 2000. LNCS, vol. 1894, pp. 441–456. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

Download references

Acknowledgement

NICTA is funded by the Australian Government as represented by the Department of Broadband, Communications and the Digital Economy and the Australian Research Council through the ICT Centre of Excellence program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Mayer-Eichberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Abío, I., Gange, G., Mayer-Eichberger, V., Stuckey, P.J. (2016). On CNF Encodings of Decision Diagrams. In: Quimper, CG. (eds) Integration of AI and OR Techniques in Constraint Programming. CPAIOR 2016. Lecture Notes in Computer Science(), vol 9676. Springer, Cham. https://doi.org/10.1007/978-3-319-33954-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33954-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33953-5

  • Online ISBN: 978-3-319-33954-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics