Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Polyhedral Approach to Online Bipartite Matching

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9682))

  • 1439 Accesses

Abstract

We study the i.i.d. online bipartite matching problem, a dynamic version of the classical model where one side of the bipartition is fixed and known in advance, while nodes from the other side appear one at a time as i.i.d. realizations of an underlying distribution, and must immediately be matched or discarded. We consider various relaxations of the set of achievable matching probabilities, introduce star inequalities and their generalizations, and discuss when they are facet-defining. We also show how several of these relaxations correspond to ranking policies and their time-dependent generalizations. We finally present results of a computational study of these relaxations and policies to determine their empirical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adelman, D.: Price-directed replenishment of subsets: methodology and its application to inventory routing. Manuf. Serv. Oper. Manage. 5, 348–371 (2003)

    Google Scholar 

  2. Adelman, D.: A price-directed approach to stochastic inventory/routing. Oper. Res. 52, 499–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Adelman, D., Barz, C.: A unifying approximate dynamic programming model for the economic lot scheduling problem. Math. Oper. Res. 39, 374–402 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertsimas, D., Niño-Mora, J.: Conservation laws, extended polymatroids and multi-armed bandit problems; a polyhedral approach to indexable systems. Math. Oper. Res. 21, 257–306 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Birnbaum, B., Mathieu, C.: On-line bipartite matching made simple. ACM SIGACT News 39, 80–87 (2008)

    Article  Google Scholar 

  6. Coffman Jr., E., Mitrani, I.: A characterization of waiting time performance realizable by single-server queues. Oper. Res. 28, 810–821 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. de Farias, D., van Roy, B.: The linear programming approach to approximate dynamic programming. Oper. Res. 51, 850–865 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic matching: beating \(1-1/e\). In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 117–126. IEEE (2009)

    Google Scholar 

  9. Haeupler, B., Mirrokni, V.S., Zadimoghaddam, M.: Online stochastic weighted matching: improved approximation algorithms. In: Chen, N., Elkind, E., Koutsoupias, E. (eds.) WINE 2011. LNCS, vol. 7090, pp. 170–181. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Jaillet, P., Lu, X.: Online stochastic matching: new algorithms with better bounds. Math. Oper. Res. 39, 624–646 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Karp, R., Vazirani, U., Vazirani, V.: An optimal algorithm for on-line bipartite matching. In: Proceedings of the 22nd Annual ACM Symposium on the Theory of Computing (STOC), pp. 352–358. ACM, New York (1990)

    Google Scholar 

  12. Kra, I., Simanca, S.: On circulant matrices. Not. AMS 59, 368–377 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Manshadi, V., Oveis Gharan, S., Saberi, A.: Online stochastic matching: online actions based on offline statistics. Math. Oper. Res. 37, 559–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schweitzer, P., Seidmann, A.: Generalized polynomial approximations in markovian decision processes. J. Math. Anal. Appl. 110, 568–582 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Toriello, A.: Optimal toll design: a lower bound framework for the asymmetric traveling salesman problem. Math. Program. 144, 247–264 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Toriello, A., Haskell, W., Poremba, M.: A dynamic traveling salesman problem with stochastic arc costs. Oper. Res. 62, 1107–1125 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Trick, M., Zin, S.: Spline approximations to value functions: a linear programming approach. Macroecon. Dyn. 1, 255–277 (1997)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Toriello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Torrico, A., Ahmed, S., Toriello, A. (2016). A Polyhedral Approach to Online Bipartite Matching. In: Louveaux, Q., Skutella, M. (eds) Integer Programming and Combinatorial Optimization. IPCO 2016. Lecture Notes in Computer Science(), vol 9682. Springer, Cham. https://doi.org/10.1007/978-3-319-33461-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33461-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33460-8

  • Online ISBN: 978-3-319-33461-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics