Nothing Special   »   [go: up one dir, main page]

Skip to main content

Cloud Adoption by Fine-Grained Resource Adaptation: Price Determination of Diagonally Scalable IaaS

  • Conference paper
  • First Online:
Advances in Service-Oriented and Cloud Computing (ESOCC 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 567))

Included in the following conference series:

Abstract

Cloud computing is a suitable solution for addressing the uncertainty of resource demand by allowing dynamic resource adjustment. However, most IaaS cloud providers offer their services with a limited granularity at rather slow scaling speeds and flat pricing schemes. Diagonal scaling techniques can offer a more adaptive and fine-grained service with a likewise granular pricing model. Before offering such an adaptive service, cloud providers need a comparison between horizontal and diagonal scaling models to estimate how resource prices can be increased while still staying competitive. In this paper we examine the resource reduction potential of diagonal scaling in comparison to conventional horizontal approaches. Given an empirical load pattern of a web application provider we find a CPU allocation reduction potential of 8.05 % compared to the conventional service. Given a more fine-grained pricing model, we find an additional revenue potential for diagonal scaling of 9.01 % when following a competitor based pricing regime.

This work has been developed in the project CLoUd Services Scalability (CLUSS) that is partly funded by the German ministry of education and research (ref. num.: 01IS13013A-D).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://aws.amazon.com/autoscaling, last visit 23.06.2015.

  2. 2.

    http://rackspace.com/cloud/auto-scale, last visit 23.06.2015.

  3. 3.

    http://aws.amazon.com/ec2/pricing/, last visit 23.06.2015.

  4. 4.

    http://rackspace.com/cloud/servers/, last visit 23.06.2015.

  5. 5.

    http://gloveler.de/, last visit 23.06.2015.

  6. 6.

    http://cpubenchmark.net/compare.php?cmp[]=834&cmp[]=896&cmp[]=1220, last visit 23.06.2015.

  7. 7.

    http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/example-templates-autoscaling.html, last visit 23.06.2015.

  8. 8.

    http://aws.amazon.com/ec2/instance-types/, last visit 23.06.2015.

References

  1. Andrade, P., et al.: Improving business by migrating applications to the cloud using cloudstep. In: Proceedings of WAINA 2015, pp. 77–82, March 2015

    Google Scholar 

  2. Berndt, P., Maier, A.: Towards sustainable IaaS pricing. In: Altmann, J., Vanmechelen, K., Rana, O.F. (eds.) GECON 2013. LNCS, vol. 8193, pp. 173–184. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Chebrolu, S.B.: Assessing the relationships among cloud adoption, strategic alignment and information technology effectiveness. JITM 22(2), 13–29 (2011)

    Google Scholar 

  4. Chieu, T., Mohindra, A., Karve, A., Segal, A.: Dynamic scaling of web applications in a virtualized cloud computing environment. In: Proceedings of the ICEBE 2009, pp. 281–286, October 2009

    Google Scholar 

  5. Dawoud, W., Takouna, I., Meinel, C.: Elastic virtual machine for fine-grained cloud resource provisioning. In: Krishna, P.V., Babu, M.R., Ariwa, E. (eds.) ObCom 2011, Part I. CCIS, vol. 269, pp. 11–25. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  6. Dutta, S., Gera, S., Verma, A., Viswanathan, B.: Smartscale: automatic application scaling in enterprise clouds. In: Proceedings of the IEEE CLOUD 2012, pp. 221–228 (2012)

    Google Scholar 

  7. Eckerson, W.W.: Three tier client/server architectures: achieving scalability, performance, and efficiency in client/server applications. Open Inf. Syst. 3(20), 46–50 (1995)

    Google Scholar 

  8. El Kihal, S., Schlereth, C., Skiera, B.: Price comparison for infrastructure-as-a-service. In: Proceedings of the ECIS 2012, June 2015, pp. 1–12 (2012)

    Google Scholar 

  9. Han, R., Guo, L., Ghanem, M.M., Guo, Y.: Lightweight resource scaling for cloud applications. In: Proceedings of IEEE/ACM CCGrid 2014, pp. 644–651 (2012)

    Google Scholar 

  10. Heinze, T., Pappalardo, V., Jerzak, Z., Fetzer, C.: Auto-scaling techniques for elastic data stream processing. In: Proceedings of ICDE 2014, pp. 296–302 (2014)

    Google Scholar 

  11. Iqbal, W., et al.: Adaptive resource provisioning for read intensive multi-tier applications in the cloud. Future Gener. Comput. Syst. 27, 871–879 (2011)

    Article  Google Scholar 

  12. Jamshidi, P., Ahmad, A., Pahl, C.: Cloud migration research: a systematic review. IEEE Trans. Cloud Comput. 1(2), 142–157 (2013)

    Article  Google Scholar 

  13. Jamshidi, P., Ahmad, A., Pahl, C.: Autonomic resource provisioning for cloud-based software. In: Proceedings of SEAMS 2014, pp. 95–104. ACM, New York, NY, USA (2014)

    Google Scholar 

  14. Jin, H., Wang, X., Wu, S., Di, S., Shi, X.: Towards optimized fine-grained pricing of IaaS cloud platform. IEEE Trans. Cloud Comput. 3(4), 1 (2014)

    Google Scholar 

  15. Kalyvianaki, E., Charalambous, T., Hand, S.: Self-adaptive and self-configured CPU resource provisioning for virtualized servers using kalman filters. In: Proceedings of the ICAC 2009, pp. 117–126. ACM, New York (2009)

    Google Scholar 

  16. Leavitt, N.: Is cloud computing really ready for prime time? Computer 42(1), 15–20 (2009)

    Article  MathSciNet  Google Scholar 

  17. Lin, G., Fu, D., Zhu, J., Dasmalchi, G.: Cloud computing: IT as a service. IT Prof. 11(2), 10–13 (2009)

    Article  Google Scholar 

  18. Mao, M., Humphrey, M.: A performance study on the VM startup time in the cloud. In: Proceedings of the IEEE CLOUD 2012, pp. 423–430 (2012)

    Google Scholar 

  19. Menascé, D.A.: QoS issues in web services. IEEE Internet Comput. 6(6), 72–75 (2002)

    Article  Google Scholar 

  20. Raza, M.H., Adenola, A.F., Nafarieh, A., Robertson, W.: The slow adoption of cloud computing and IT workforce. Procedia Comput. Sci. 52, 1114–1119 (2015)

    Article  Google Scholar 

  21. Sedaghat, M., Hernandez-Rodriguez, F., Elmroth, E.: A virtual machine re-packing approach to the horizontal vs. vertical elasticity trade-off for cloud autoscaling. In: CAC, p. 1 (2013)

    Google Scholar 

  22. Sperber, A.P.: Diagonale Skalierung verteilter Webanwendungen am Beispiel von gloveler. Ph.D. thesis, Karlsruhe Institute of Technology (KIT), Karlsruhe (2014)

    Google Scholar 

  23. Urgaonkar, B., et al.: An analytical model for multi-tier internet services and its applications. SIGMETRICS Perform. Eval. Rev. 33(1), 291–302 (2005)

    Article  Google Scholar 

  24. Vasić, N., Novaković, D., Miučin, S., Kostić, D., Bianchini, R.: Dejavu: accelerating resource allocation in virtualized environments. In: Proceedings of the ASPLOS 2012, pp. 423–436 (2012)

    Google Scholar 

  25. Yazdanov, L., Fetzer, C.: Vertical scaling for prioritized VMs provisioning. In: Proceedings of the CGC 2012, pp. 118–125. IEEE Computer Society, Washington, DC (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Laubis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Laubis, K., Simko, V., Schuller, A. (2016). Cloud Adoption by Fine-Grained Resource Adaptation: Price Determination of Diagonally Scalable IaaS. In: Celesti, A., Leitner, P. (eds) Advances in Service-Oriented and Cloud Computing. ESOCC 2015. Communications in Computer and Information Science, vol 567. Springer, Cham. https://doi.org/10.1007/978-3-319-33313-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33313-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33312-0

  • Online ISBN: 978-3-319-33313-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics