Abstract
This chapter will focus on the motion control of robotic rigid manipulators. In other words, this chapter does not treat the motion control of mobile robots, flexible manipulators, and manipulators with elastic joints. The main challenge in the motion control problem of rigid manipulators is the complexity of their dynamics and uncertainties. The former results from nonlinearity and coupling in the robot manipulators. The latter is twofold: structured and unstructured. Structured uncertainty means imprecise knowledge of the dynamic parameters and will be touched upon in this chapter, whereas unstructured uncertainty results from joint and link flexibility, actuator dynamics, friction, sensor noise, and unknown environment dynamics, and will be treated in other chapters.
In this chapter, we begin with an introduction to motion control of robot manipulators from a fundamental viewpoint, followed by a survey and brief review of the relevant advanced materials. Specifically, the dynamic model and useful properties of robot manipulators are recalled in Sect. 8.1. The joint and operational space control approaches, two different viewpoints on control of robot manipulators, are compared in Sect. 8.2. Independent joint control and proportional–integral–derivative (GlossaryTerm
PID
) control, widely adopted in the field of industrial robots, are presented in Sects. 8.3 and 8.4, respectively. Tracking control, based on feedback linearization, is introduced in Sect. 8.5. The computed-torque control and its variants are described in Sect. 8.6. Adaptive control is introduced in Sect. 8.7 to solve the problem of structural uncertainty, whereas the optimality and robustness issues are covered in Sect. 8.8. To compute suitable set point signals as input values for these motion controllers, Sect. 8.9 introduces reference trajectory planning concepts. Since most controllers of robot manipulators are implemented by using microprocessors, the issues of digital implementation are discussed in Sect. 8.10. Finally, learning control, one popular approach to intelligent control, is illustrated in Sect. 8.11.Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- 1-D:
-
one-dimensional
- D/A:
-
digital-to-analog
- DC:
-
direct current
- DOF:
-
degree of freedom
- DSP:
-
digital signal processor
- GAS:
-
global asymptotic stability
- HJB:
-
Hamilton–Jacobi–Bellman
- HJI:
-
Hamilton–Jacobi–Isaac
- IOSS:
-
input-output-to-state stability
- ISS:
-
input-to-state stability
- MIMO:
-
multiple-input–multiple-output
- MRAC:
-
model reference adaptive control
- PD:
-
proportional–derivative
- PID:
-
proportional–integral–derivative
- PI:
-
propositional integral
- SGAS:
-
semiglobal asymptotic stability
- SGUUB:
-
semiglobal uniform ultimate boundedness
- SISO:
-
single input single-output
- UUB:
-
uniform ultimate boundedness
References
C. Canudas de Wit, B. Siciliano, G. Bastin: Theory of Robot Control (Springer, London 1996)
J.J. Craig: Adaptive Control of Mechanical Manipulators, Ph.D. Thesis (UMI Dissertation Information Service, Ann Arbor 1986)
R.J. Schilling: Fundametals of Robotics: Analysis and Control (Prentice Hall, Englewood Cliffs 1989)
L. Sciavicco, B. Siciliano: Modeling and Control of Robot Manipulator (McGraw-Hill, New York 1996)
M.W. Spong, M. Vidyasagar: Robot Dynamics and Control (Wiley, New York 1989)
M.W. Spong, F.L. Lewis, C.T. Abdallah (Eds.): Robot Control (IEEE, New York 1989)
C.H. An, C.G. Atkeson, J.M. Hollerbach: Model–Based Control of a Robot Manipulator (MIT Press, Cambridge, 1988)
R.M. Murray, Z. Xi, S.S. Sastry: A Mathematical Introduction to Robotic Manipulation (CRC, Boca Raton 1994)
T. Yoshikawa: Foundations of Robotics (MIT Press, Cambridge 1990)
O. Khatib: A unified approach for motion and force control of robot manipulators: The operational space formulation, IEEE J. Robotics Autom. 3(1), 43–53 (1987)
J.Y.S. Luh, M.W. Walker, R.P.C. Paul: Resolved–acceleration control of mechanical manipulator, IEEE Trans. Autom. Control 25(3), 468–474 (1980)
S. Arimoto, F. Miyazaki: Stability and robustness of PID feedback control for robot manipulators of sensory capability. In: Robotics Research, ed. by M. Brady, R. Paul (MIT Press, Cambridge 1984) pp. 783–799
L.C. Fu: Robust adaptive decentralized control of robot manipulators, IEEE Trans. Autom. Control 37(1), 106–110 (1992)
H. Seraji: Decentralized adaptive control of manipulators: Theory, simulation, and experimentation, IEEE Trans. Robotics Autom. 5(2), 183–201 (1989)
J.G. Ziegler, N.B. Nichols: Optimum settings for automatic controllers, Trans. ASME 64, 759–768 (1942)
Y. Choi, W.K. Chung: PID Trajectory Tracking Control for Mechanical Systems, Lecture Notes in Control and Information Sciences, Vol. 289 (Springer, New York 2004)
R. Kelly: PD control with desired gravity compensation of robot manipulators: A review, Int. J. Robotics Res. 16(5), 660–672 (1997)
M. Takegaki, S. Arimoto: A new feedback method for dynamic control of manipulators, Trans. ASME J. Dyn. Syst. Meas, Control 103, 119–125 (1981)
P. Tomei: Adaptive PD controller for robot manipulators, IEEE Trans. Robotics Autom. 7(4), 565–570 (1991)
R. Ortega, A. Loria, R. Kelly: A semi-globally stable output feedback PI${}^{2}$ D regulator for robot manipulators, IEEE Trans. Autom. Control 40(8), 1432–1436 (1995)
D. Angeli: Input-to-State stability of PD-controlled robotic systems, Automatica 35, 1285–1290 (1999)
J.A. Ramirez, I. Cervantes, R. Kelly: PID regulation of robot manipulators: Stability and performance, Syst. Control Lett. 41, 73–83 (2000)
R. Kelly: Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions, IEEE Trans. Autom. Control 43(7), 934–937 (1998)
Z. Qu, J. Dorsey: Robust tracking control of robots by a linear feedback law, IEEE Trans. Autom. Control 36(9), 1081–1084 (1991)
H. Berghuis, H. Nijmeijer: Robust control of robots via linear estimated state feedback, IEEE Trans. Autom. Control 39(10), 2159–2162 (1994)
Y. Choi, W.K. Chung, I.H. Suh: Performance and $\mathcal{H}_{\infty}$ optimality of PID trajectory tracking controller for Lagrangian systems, IEEE Trans. Robotics Autom. 17(6), 857–869 (2001)
K. Aström, T. Hagglund: PID Controllers: Theory, Design, and Tuning (Instrument Society of America, Research Triangle Park 1995)
C.C. Yu: Autotuning of PID Controllers: Relay Feedback Approach (Springer, London 1999)
F.L. Lewis, C.T. Abdallah, D.M. Dawson: Control of Robot Manipulators (Macmillan, New York 1993)
A. Isidori: Nonlinear Control Systems: An Introduction, Lecture Notes in Control and Information Sciences, Vol. 72 (Springer, New York 1985)
H. Berghuis, H. Nijmeijer: A passivity approach to controller–observer design for robots, IEEE Trans. Robotics Autom. 9, 740–754 (1993)
J.J. Slotine, W. Li: On the adaptive control of robot manipulators, Int. J. Robotics Res. 6(3), 49–59 (1987)
G. Liu, A.A. Goldenberg: Comparative study of robust saturation–based control of robot manipulators: analysis and experiments, Int. J. Robotics Res. 15(5), 473–491 (1996)
D.M. Dawson, M. Grabbe, F.L. Lewis: Optimal control of a modified computed–torque controller for a robot manipulator, Int. J. Robotics Autom. 6(3), 161–165 (1991)
D.M. Dawson, Z. Qu, J. Duffie: Robust tracking control for robot manipulators: Theory, simulation and implementation, Robotica 11, 201–208 (1993)
A. Jaritz, M.W. Spong: An experimental comparison of robust control algorithms on a direct drive manipulator, IEEE Trans. Control Syst. Technol. 4(6), 627–640 (1996)
A. Isidori: Nonlinear Control Systems, 3rd edn. (Springer, New York 1995)
J.J. Slotine, W. Li: Applied Nonlinear Control (Prentice Hall, Englewood Cliffs 1991)
W.J. Rugh: Linear System Theory, 2nd edn. (Prentice Hall, Upper Saddle River 1996)
M.W. Spong, M. Vidyasagar: Robust microprocessor control of robot manipulators, Automatica 23(3), 373–379 (1987)
H.K. Khalil: Nonlinear Systems, 3rd edn. (Prentice Hall, Upper Saddle River 2002)
M. Vidysagar: Nonlinear Systems Analysis, 2nd edn. (Prentice Hall, Englewood Ciffs 1993)
J.T. Wen: A unified perspective on robot control: The energy Lyapunov function approach, Int. J. Adapt. Control Signal Process. 4, 487–500 (1990)
R. Ortega, M.W. Spong: Adaptive motion control of rigid robots: A tutorial, Automatica 25(6), 877–888 (1989)
N. Sadegh, R. Horowitz: Stability and robustness analysis of a class of adaptive contollers for robotic manipulators, Int. J. Robotics Res. 9(3), 74–92 (1990)
S. Dubowsky, D.T. DesForges: The application of model-reference adaptive control to robotic manipulators, ASME J. Dyn. Syst. Meas. Control 37(1), 106–110 (1992)
S.H. Hsu, L.C. Fu: A fully adaptive decentralized control of robot manipulators, Automatica 42, 1761–1767 (2008)
A. Balestrino, G. de Maria, L. Sciavicco: An adaptive model following control for robotic manipulators, ASME J. Dyn. Syst. Meas. Control 105, 143–151 (1983)
S. Nicosia, P. Tomei: Model reference adaptive control algorithms for industrial robots, Automatica 20, 635–644 (1984)
R. Horowitz, M. Tomizuka: An adaptive control scheme for mechanical manipulators-Compensation of nonlinearity and decoupling control, ASME J. Dyn. Syst. Meas. Control 108, 127–135 (1986)
I.D. Laudau: Adaptive Control: The Model Reference Approach (Dekker, New York 1979)
R. Lozano, C. Canudas de Wit: Passivity based adaptive control for mechanical manipulators using LS type estimation, IEEE Trans. Autom. Control 35(12), 1363–1365 (1990)
B. Brogliato, I.D. Laudau, R. Lozano: Passive least squares type estimation algorithm for direct adaptive control, Int. J. Adapt. Control Signal Process. 6, 35–44 (1992)
R. Johansson: Adaptive control of robot manipulator motion, IEEE Trans. Robotics Autom. 6(4), 483–490 (1990)
M.W. Walker: Adaptive control of manipulators containing closed kinematic loops, IEEE Trans. Robotics Autom. 6(1), 10–19 (1990)
J.S. Reed, P.A. Ioannou: Instability analysis and robust adaptive control of robotic manipulators, IEEE Trans. Autom. Control 5(3), 74–92 (1989)
G. Tao: On robust adaptive control of robot manipulators, Automatica 28(4), 803–807 (1992)
H. Berghuis, R. Ogata, H. Nijmeijer: A robust adaptive controller for robot manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1992) pp. 1876–1881
R. Johansson: Quadratic optimization of motion coordination and control, IEEE Trans. Autom. Control 35(11), 1197–1208 (1990)
Z. Qu, D.M. Dawson: Robust Tracking Control of Robot Manipulators (IEEE, Piscataway 1996)
P. Dorato, C. Abdallah, V. Cerone: Linear-Quadratic Control (Prentice Hall, Upper Saddle River 1995)
A. Locatelli: Optimal Control: An Introduction (Birkhäuser, Basel 2001)
A. Isidori: Feedback control of nonlinear systems, Int. J. Robust Nonlin. Control 2, 291–311 (1992)
A.J. der van Schaft: Nonlinear state space $\mathcal{H}_{\infty}$ control theory. In: Essays on Control: Perspective in Theory and its Applications, ed. by H.L. Trentelman, J.C. Willems (Birkhäuser, Basel 1993) pp. 153–190
A.J. der van Schaft: $L_2$-gain analysis of nonlinear systems and nonlinear state feedback $\mathcal{H}_{\infty}$ control, IEEE Trans. Autom. Control 37(6), 770–784 (1992)
J. Park, W.K. Chung, Y. Youm: Analytic nonlinear $\mathcal{H}_{\infty}$ inverse-optimal control for Euler–Lagrange system, IEEE Trans. Robotics Autom. 16(6), 847–854 (2000)
B.S. Chen, T.S. Lee, J.H. Feng: A nonlinear $\mathcal{H}_{\infty}$ control design in robotics systems under parametric perturbation and external disturbance, Int. J. Control 59(12), 439–461 (1994)
J. Park, W.K. Chung: Design of a robust $\mathcal{H}_{\infty}$ PID control for industrial manipulators, ASME J. Dyn. Syst. Meas. Control 122(4), 803–812 (2000)
R.H. Castain, R.P. Paul: An on-line dynamic trajectory generator, Int. J. Robotics Res. 3(1), 68–72 (1984)
T. Kröger: On-Line Trajectory Generation in Robotic Systems, Springer Tracts in Advanced Robotics, Vol. 58 (Springer, Berlin, Heidelberg 2010)
D. Simon, C. Isik: A trigonometric trajectory generator for robotic arms, Int. J. Control 57(3), 505–517 (1993)
L. Biagiotti, C. Melchiorri: Trajectory Planning for Automatic Machines and Robots (Springer, Berlin, Heidelberg 2008)
J.E. Bobrow: Optimal robot path planning using the minimum-time criterion, IEEE J. Robotics Autom. 4(4), 443–450 (1988)
K.G. Shin, N.D. McKay: Minimum-time control of robotic manipulators with geometric path constraints, IEEE Trans. Autom. Control 30(5), 531–541 (1985)
F. Pfeiffer, R. Johanni: A concept for manipulator trajectory planning, Proc. Int. IEEE Conf. Robotics Autom. (ICRA) (1986) pp. 1399–1405
W. Khalil, E. Dombre: Trajectory generation. In: Modeling, Identification and Control of Robots, ed. by W. Khalil, E. Dombre (Butterworth-Heinemann, Oxford 2004)
A.I. Kostrikin, Y.I. Manin: Linear Algebra and Geometry (Gordon and Breach Sci. Publ., Amsterdam 1997)
M.E. Kahn, B. Roth: The near-minimum-time control of open-loop articulated kinematic chains, ASME J. Dyn. Syst. Meas. Control 93, 164–172 (1971)
M. Brady: Trajectory planning. In: Robot Motion: Planning and Control, ed. by M. Brady, J.M. Hollerbach, T.L. Johnson, T. Lozano-Pérez, M.T. Mason (MIT Press, Cambridge 1982)
R.P.C. Paul: Manipulator cartesian path control. In: Robot Motion: Planning and Control, ed. by M. Brady, J.M. Hollerbach, T.L. Johnson, T. Lozano-Pérez, M.T. Mason (MIT Press, Cambridge 1982)
R.H. Taylor: Planning and execution of straight-line manipulator trajectories. In: Robot Motion: Planning and Control, ed. by M. Brady, J.M. Hollerbach, T.L. Johnson, T. Lozano-Pérez, M.T. Mason (MIT Press, Cambridge 1982)
C.-S. Lin, P.-R. Chang, J.Y.S. Luh: Formulation and optimization of cubic polynomial joint trajectories for industrial robots, IEEE Trans. Autom. Control 28(12), 1066–1074 (1983)
J.M. Hollerbach: Dynamic scaling of manipulator trajectories, ASME J. Dyn. Syst. Meas. Control 106(1), 102–106 (1984)
K.J. Kyriakopoulos, G.N. Sridis: Minimum jerk path generation, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1988) pp. 364–369
J.-J.E. Slotine, H.S. Yang: Improving the efficiency of time-optimal path-following algorithms, IEEE Trans. Robotics Autom. 5(1), 118–124 (1989)
Z. Shiller, H.-H. Lu: Computation of path constrained time optimal motions with dynamic singularities, ASME J. Dyn. Syst. Meas. Control 114(1), 34–40 (1992)
P. Fiorini, Z. Shiller: Time optimal trajectory planning in dynamic environments, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1996) pp. 1553–1558
O. Dahl, L. Nielsen: Torque limited path following by on-line trajectory time scaling, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1989) pp. 1122–1128
B. Cao, G.I. Dodds, G.W. Irwin: Time-optimal and smooth constrained path planning for robot manipulators, Proc. IEEE Int. Conf. Robotics Autom. (ICRA) (1994) pp. 1853–1858
B. Cao, G.I. Dodds, G.W. Irwin: A practical approach to near time-optimal inspection-task-sequence planning for two cooperative industrial robot arms, Int. J. Robotics Res. 17(8), 858–867 (1998)
D. Constantinescu, E.A. Croft: Smooth and time-optimal trajectory planning for industrial manipulators along specified paths, J. Robotics Syst. 17(5), 233–249 (2000)
S. Macfarlane, E.A. Croft: Jerk-bounded manipulator trajectory planning: Design for real-time applications, IEEE Trans. Robotics Autom. 19(1), 42–52 (2003)
R.L. Andersson: A Robot Ping-Pong Player: Experiment in Real-Time Intelligent Control (MIT Press, Cambridge 1988)
R.L. Andersson: Aggressive trajectory generator for a robot ping-pong player, IEEE Control Syst. Mag. 9(2), 15–21 (1989)
J. Lloyd, V. Hayward: Trajectory generation for sensor-driven and time-varying tasks, Int. J. Robotics Res. 12(4), 380–393 (1993)
K. Ahn, W.K. Chung, Y. Yourn: Arbitrary states polynomial-like trajectory (ASPOT) generation, Proc. IEEE 30th Annu. Conf. Ind. Electron. Soc. (2004) pp. 123–128
X. Broquère, D. Sidobre, I. Herrera-Aguilar: Soft motion trajectory planner for service manipulator robot, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 2808–2813
R. Haschke, E. Weitnauer, H. Ritter: On-line planning of time-optimal, jerk-limited trajectories, Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS) (2008) pp. 3248–3253
J.J. Craig: Introduction to Robotics: Mechanics and Control (Prentice Hall, Upper Saddle River 2003)
K.S. Fu, R.C. Gonzalez, C.S.G. Lee: Robotics: Control, Sensing, Vision and Intelligence (McGraw-Hill, New York 1988)
M.W. Spong, S.A. Hutchinson, M. Vidyasagar: Robot Modeling and Control (Wiley, New York 2006)
S. Arimoto: Mathematical theory or learning with application to robot control. In: Adaptive and Learning Control, ed. by K.S. Narendra (Plenum, New York 1986) pp. 379–388
S. Kawamura, F. Miyazaki, S. Arimoto: Realization of robot motion based on a learning method, IEEE Trans. Syst. Man. Cybern. 18(1), 126–134 (1988)
G. Heinzinger, D. Frewick, B. Paden, F. Miyazaki: Robust learning control, Proc. IEEE Int. Conf. Decis. Control (1989)
S. Arimoto: Robustness of learning control for robot manipulators, Proc. IEEE Int. Conf. Decis. Control (1990) pp. 1523–1528
S. Arimoto, T. Naiwa, H. Suzuki: Selective learning with a forgetting factor for robotic motion control, Proc. IEEE Int. Conf. Decis. Control (1991) pp. 728–733
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Video-References
Video-References
- :
-
Gain change of the PID controller available from http://handbookofrobotics.org/view-chapter/08/videodetails/25
- :
-
Safe human-robot cooperation available from http://handbookofrobotics.org/view-chapter/08/videodetails/757
- :
-
Virtual whiskers – Highly responsive robot collision avoidance available from http://handbookofrobotics.org/view-chapter/08/videodetails/758
- :
-
JediBot – Experiments in human-robot sword-fighting available from http://handbookofrobotics.org/view-chapter/08/videodetails/759
- :
-
Different jerk limits of robot arm trajectories available from http://handbookofrobotics.org/view-chapter/08/videodetails/760
- :
-
Sensor-based online trajectory generation available from http://handbookofrobotics.org/view-chapter/08/videodetails/761
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Chung, W.K., Fu, LC., Kröger, T. (2016). Motion Control. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-32552-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32550-7
Online ISBN: 978-3-319-32552-1
eBook Packages: EngineeringEngineering (R0)