Abstract
According to the conventional Maxwell distribution function, a new equilibrium distribution function based on a discrete velocity model (D2Q13) is proposed. A parallel lattice Boltzmann algorithm based on this new function is used for simulating the lid-driven cavity flow. The experimental results validate the correctness of the new equilibrium distribution function.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Raabe, D.: Overview of the lattice Boltzmann method for nano- and micro-scale fluid dynamics in materials science and engineering. Model. Simul. Mater. Sci. Eng. 12(6), 13–46 (2004)
Tang, G., Tao, W., He, Y.: Gas slippage effect on micriscale porous flow using the lattice Boltzmann method. Phys. Rev. E 72(5), 056301 (2005)
Guo, Z.L., Zhao, T.S.: Lattice Boltzmann model for incompressible flows through porous media. Phys. Rev. E 66(32B), 036301–036304 (2002)
Grunau, D., Chen, S., Eggert, K.: A lattice Boltzmann model for multiphase fluid-flows. Phys. Fluids 5(10), 2557–2562 (1993)
Thömesa, G., Beckera, J., Junkb, M., Vaikuntama, A.K., Kehrwalda, D., Klarc, A., Steinera, K., Wiegmann, A.: A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method. J. Comput. Phys. 228(4), 1139–1156 (2009)
Qu, K., Shu, C., Chew, Y.T.: Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number. Phys. Rev. E 75(3), 036706 (2007)
Alexander, F.J., Chen, S., Sterling, J.D.: Lattice Boltzmann thermodynamics. Phys. Rev. E 47(8), 2249–2252 (1993)
Kataoka, T., Tsutahara, M.: Lattice Boltzmann method for the compressible Euler equations. Phys. Rev. E 69(5), 056702 (2004)
Cottet, G.-H., Koumoutsakos, P.: Vortex Methods: Theory and Practice. Cambridge University Press, Cambridge, England (2000)
He, Y.L., Wang, Y., Li, Q.: Lattice Boltzmann Method: Theory and Applications. Science Press, Beijing (2009)
Vanka, S.P.: Block-implicit multi-grid solution of Navier-Stokes equations in primitive variables. J. Comput. Phys. 65, 138–158 (1986)
Ghia, U., Ghia, K.N., Shin, C.T.: High-Re solutions for incompressible flow using the Navier-Stokes equations and a multi-grid method. J. Comput. Phys. 48(3), 387–410 (1982)
Hou, S., Zou, Q., Chen, S.: Simulation of cavity flow by the lattice Boltzmann method. J. Comput. Phys. 118(2), 329–347 (1995)
Acknowledgments
This work was supported by National Nature Science Foundation of China (No. 91330116).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Xu, W., Liu, Z., Zhu, W., Zhang, W. (2016). A New Equilibrium Distribution Function of the Lattice Boltzmann Method. In: Xie, J., Chen, Z., Douglas, C., Zhang, W., Chen, Y. (eds) High Performance Computing and Applications. HPCA 2015. Lecture Notes in Computer Science(), vol 9576. Springer, Cham. https://doi.org/10.1007/978-3-319-32557-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-32557-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32556-9
Online ISBN: 978-3-319-32557-6
eBook Packages: Computer ScienceComputer Science (R0)