Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hybrid Optimization Method Applied to Adaptive Splitting and Selection Algorithm

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9648))

Included in the following conference series:

Abstract

The paper presents an approach to train combined classifiers based on feature space splitting and selection of the best classifier ensemble to each subspace of feature space. The learning method uses a hybrid algorithm that combines a Genetic Algorithm and Cross Entropy Method. The proposed approach was evaluated on the basis of the comprehensive computer experiments run on balanced and imbalanced datasets, and compared with Cluster and Selection algorithm, improving the results obtained by this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://sci2s.ugr.es/keel/datasets.php.

  2. 2.

    http://prtools.org/prtools/prtools-overview/.

References

  1. Akhand, M.A.H., Murase, K.: Ensembles of neural networks based on the alteration of input feature values. Int. J. Neural Syst. 22(1), 77–87 (2012)

    Article  Google Scholar 

  2. Bäck, T., Schwefel, H.: An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)

    Article  Google Scholar 

  3. Brown, G., Wyatt, J.L., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Inf. Fusion 6(1), 5–20 (2005)

    Article  Google Scholar 

  4. Caballero, R., Hernndez-Daz, A.G., Laguna, M., Molina, J.: Cross entropy for multiobjective combinatorial optimization problems with linear relaxations. Eur. J. Oper. Res. 243(2), 362–368 (2015)

    Article  MathSciNet  Google Scholar 

  5. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2, 263–286 (1995)

    MATH  Google Scholar 

  6. Giacinto, G., Roli, F.: Dynamic classifier selection based on multiple classifier behaviour. Pattern Recogn. 34(9), 1879–1881 (2001)

    Article  MATH  Google Scholar 

  7. Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. Found. Genet. Algorithms 1, 69–93 (1991)

    MathSciNet  Google Scholar 

  8. Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis. Artif. Intell. Rev. 12(4), 265–319 (1998)

    Article  MATH  Google Scholar 

  9. Jackowski, K., Wozniak, M.: Algorithm of designing compound recognition system on the basis of combining classifiers with simultaneous splitting feature space into competence areas. Pattern Anal. Appl. 12(4), 415–425 (2009)

    Article  MathSciNet  Google Scholar 

  10. Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  MATH  Google Scholar 

  11. Krogh, A., Vedelsby, J.: Neural network ensembles, cross validation, and active learning. Adv. Neural Inf. Process. Syst. 7, 231–238 (1995)

    Google Scholar 

  12. L.I. Kuncheva. Clustering-and-selection model for classifier combination. In: Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies, Proceedings. vol. 1, pp. 185–188 (2000)

    Google Scholar 

  13. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience, Piscataway (2004)

    Book  MATH  Google Scholar 

  14. Lopez-Garcia, P., Onieva, E., Osaba, E., Masegosa, A.D., Perallos, A.: A hybrid method for short-term traffic congestion forecasting using genetic algorithms and cross entropy. IEEE Trans. Intell. Transp. Syst. 17(2), 557–569 (2016)

    Article  Google Scholar 

  15. Onieva, E., Naranjo, J.E., Milanés, V., Alonso, J., García, R., Pérez, J.: Automatic lateral control for unmanned vehicles via genetic algorithms. Appl. Soft Comput. 11(1), 1303–1309 (2011)

    Article  Google Scholar 

  16. Osaba, E., Diaz, F., Onieva, E.: Golden ball: a novel meta-heuristic to solve combinatorial optimization problems based on soccer concepts. Appl. Intell. 41(1), 145–166 (2014)

    Article  Google Scholar 

  17. Rastrigin, L.A., Erenstein, R.H.: Method of Collective Recognition. Energoizdat, Moscow (1981)

    Google Scholar 

  18. Rubinstein, R.: The cross-entropy method for combinatorial and continuous optimization. Methodol. Comput. Appl. Probab. 1(2), 127–190 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wozniak, M., Graña, M., Corchado, E.: A survey of multiple classifier systems as hybrid systems. Inf. Fusion 16, 3–17 (2014). Special Issue on Information Fusion in Hybrid Intelligent Fusion Systems

    Article  Google Scholar 

Download references

Acknowledgment

Pedro Lopez-Garcia, Enrique Onieva and Asier Perallos’ work was supported by TIMON Project (Enhanced real time services for an optimized multimodal mobility relying on cooperative networks and open data). This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No. 636220. Also, Michal Wozniak’s work was supported by the Polish National Science Centre under the grant no. DEC-2013/09/B/ST6/02264 and by EC under FP7, Coordination and Support Action, Grant Agreement Number 316097, ENGINE - European Research Centre of Network Intelligence for Innovation Enhancement (http://engine.pwr.wroc.pl/). All computer experiments were carried out using computer equipment sponsored by ENGINE project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Lopez-Garcia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Lopez-Garcia, P., Woźniak, M., Onieva, E., Perallos, A. (2016). Hybrid Optimization Method Applied to Adaptive Splitting and Selection Algorithm. In: Martínez-Álvarez, F., Troncoso, A., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2016. Lecture Notes in Computer Science(), vol 9648. Springer, Cham. https://doi.org/10.1007/978-3-319-32034-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32034-2_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32033-5

  • Online ISBN: 978-3-319-32034-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics