Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards Human-Competitive Game Playing for Complex Board Games with Genetic Programming

  • Conference paper
  • First Online:
Artificial Evolution (EA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9554))

Abstract

Recent works have shown that Genetic Programming (GP) can be quite successful at evolving human-competitive strategies for games ranging from classic board games, such as chess, to action video games. However to our knowledge GP was never applied to modern complex board games, so-called eurogames, such as Settlers of Catan, i.e. board games that typically involve four characteristics: they are non zero-sum games, multiplayer, with hidden information and random elements. In this work we study how GP can evolve artificial players from low level attributes of a eurogame named “7 Wonders”, that features all the characteristics of this category. We show that GP can evolve competitive artificial intelligence (AI) players against human-designed AI or against Monte Carlo Tree Search, a standard in automatic game playing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    While the rule allows 2 player games, these are played by simulating a 3rd “dumb” player.

References

  1. Pfeiffer, M.: Reinforcement learning of strategies for Settlers of Catan. In: Mehdi, Q., Gough, N., Natkin, S., Al-Dabass, D. (eds.) 5th international conference on computer games: artificial intelligence, design and education, pp. 384–388 (2004)

    Google Scholar 

  2. Szita, I., Chaslot, G., Spronck, P.: Monte-Carlo tree search in settlers of catan. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 21–32. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  3. Winder, R.K.: Methods for approximating value functions for the Dominion card game. Evol. Intell. 6(4), 195–204 (2013)

    Article  Google Scholar 

  4. Chaslot, G.M.J.P., Saito, J.-T., Bouzy, B., Uiterwijk, J.W.H.M., Van Den Herik, H.J.: Monte-Carlo strategies for computer Go. In: Proceedings of the 18th BeNeLux Conference on Artificial Intelligence, Namur, Belgium, pp. 83–91 (2006)

    Google Scholar 

  5. Hauptman, A., Sipper, M.: GP-endchess: using genetic programming to evolve chess endgame players. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert, J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 120–131. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Sipper, M.: Evolving game-playing strategies with genetic programming. ERCIM News 64, 28–29 (2008). Invited article

    Google Scholar 

  7. Shannon, C.E.: XXII. Programming a computer for playing chess. Philos. Mag. (Ser. 7) 41(314), 256–275 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search. In: Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.J. (eds.) CG 2006. LNCS, vol. 4630, pp. 72–83. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Gelly, S., Silver, D.: Combining online and offline knowledge in uct. In: Proceedings of the 24th International Conference on Machine learning, pp. 273–280. ACM (2007)

    Google Scholar 

  11. Lorentz, R.J.: Amazons discover Monte-Carlo. In: Herik, H.J., Xu, X., Ma, Z., Winands, M.H.M. (eds.) CG 2008. LNCS, vol. 5131, pp. 13–24. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Cazenave, T.: Monte-Carlo kakuro. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 45–54. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Arneson, B., Hayward, R.B., Henderson, P.: Monte-Carlo tree search in Hex. IEEE Trans. Comput. Intell. AI Games 2(4), 251–258 (2010)

    Article  Google Scholar 

  14. Teytaud, F., Teytaud, O.: Creating an upper-confidence-tree program for havannah. In: van den Herik, H.J., Spronck, P. (eds.) ACG 2009. LNCS, vol. 6048, pp. 65–74. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Robilliard, D., Fonlupt, C., Teytaud, F.: Monte-Carlo tree search for the game of “7 wonders”. In: Cazenave, T., Winands, M.H.M., Björnsson, Y. (eds.) CGW 2014. CCIS, vol. 504, pp. 64–77. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  16. Whitehouse, D., Powley, E.J., Cowling, P.I.: Determinization and information set Monte-Carlo tree search for the card game Dou Di Zhu. In: IEEE Conference on Computational Intelligence and Games (CIG), pp. 87–94. IEEE (2011)

    Google Scholar 

  17. Hoock, J.-B., Teytaud, O.: Bandit-based genetic programming. In: Esparcia-Alcázar, A.I., Ekárt, A., Silva, S., Dignum, S., Uyar, A.Ş. (eds.) EuroGP 2010. LNCS, vol. 6021, pp. 268–277. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Robilliard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Robilliard, D., Fonlupt, C. (2016). Towards Human-Competitive Game Playing for Complex Board Games with Genetic Programming. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds) Artificial Evolution. EA 2015. Lecture Notes in Computer Science(), vol 9554. Springer, Cham. https://doi.org/10.1007/978-3-319-31471-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31471-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31470-9

  • Online ISBN: 978-3-319-31471-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics