Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mobile-Based Experience Sampling for Behaviour Research

  • Chapter
  • First Online:
Emotions and Personality in Personalized Services

Part of the book series: Human–Computer Interaction Series ((HCIS))

Abstract

The Experience Sampling Method (ESM) introduces in-situ sampling of human behaviour, and provides researchers and behavioural therapists with ecologically valid and timely assessments of a person’s psychological state. This, in turn, opens up new opportunities for understanding behaviour at a scale and granularity that was not possible just a few years ago. The practical applications are many, such as the delivery of personalised and agile behaviour interventions. Mobile computing devices represent a revolutionary platform for improving ESM. They are an inseparable part of our daily lives, context-aware, and can interact with people at suitable moments. Furthermore, these devices are equipped with sensors, and can thus take part of the reporting burden off the participant, and collect data automatically. The goal of this survey is to discuss recent advancements in using mobile technologies for ESM (mESM), and present our vision of the future of mobile experience sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Every effort has been made to provide truthful descriptions of the listed mESM frameworks, however, due to limited documentation and publications related to some of the frameworks the listed properties should be taken with caution.

  2. 2.

    The goal of this article is to suggest guidelines for future research in the field, thus we concentrate on free open-source software developed in academia, as such software can serve as a basis for next generation mESM frameworks. Commercial products for supporting mESM are outside the scope of our article.

  3. 3.

    InterruptMe is available as a free open-source software at http://bitbucket.org/veljkop/intelligenttrigger.

  4. 4.

    The following URL lists currently running experience sampling projects using the Ohmage framework: http://ohmage.org/projects.html.

References

  1. Abdesslem, F.B., Parris, I., Henderson, T.: Mobile experience sampling: reaching the parts of facebook other methods cannot reach. In: Proceedings of the Privacy and Usability Methods Pow-Wow (PUMP), Dundee, UK, Sept 2010

    Google Scholar 

  2. Aharony, N., Pan, W., Ip, C., Khayal, I., Pentland, A.: Social fmri: investigating and shaping social mechanisms in the real world. Pervasive Mobile Comput. 7(6), 643–659 (2011)

    Article  Google Scholar 

  3. Barrett, L.F., Barrett, D.J.: An introduction to computerized experience sampling in psychology. Soc. Sci. Comput. Rev. 19(2), 175–185 (2001)

    Article  Google Scholar 

  4. Clark, L., Watson, D.: Mood and the mundane: relations between daily life and self-reported mood. J. Pers. Soc. Psychol. 54(2), 296–308 (1988)

    Article  Google Scholar 

  5. Consolvo, S., Walker, M.: Using the experience sampling method to evaluate ubicomp applications. IEEE Pervasive Comput. 2, 24–31 (2003)

    Article  Google Scholar 

  6. Cote, S., Moskowitz, D.S.: On the dynamic covariation between interpersonal behavior and affect: prediction from neuroticism, extraversion, and agreeableness. J. Pers. Soc. Psychol. 75, 1032 (1998)

    Article  Google Scholar 

  7. Csikszentmihalyi, M., Larson, R.: Validity and reliability of the experience-sampling method. J. Nerv. Mental Dis. 175(9), 526–536 (1987)

    Article  Google Scholar 

  8. de Montjoye, Y.-A., Shmueli, E., Wang, S.S., Pentland, A.S.: OpenPDS: protecting the privacy of metadata through safe answers. PLoS ONE 9(7), e98790 (2014)

    Article  Google Scholar 

  9. Fahrenberg, J., Myrtek, M. (eds.): Ambulatory Assessment: Computer-Assisted Psychological and Psychophysiological Methods in Monitoring and Field Studies. Hogrefe & Huber, Seattle, WA, USA (1996)

    Google Scholar 

  10. Frable, D., Platt, L., Hoey, S.: Concealable stigmas and positive self-perceptions: feeling better around similar others. J. Pers. Soc. Psychol. 74(4), 909–921 (1998)

    Article  Google Scholar 

  11. Frias-Martinez, V. Virsesa, J.: On The relationship between socio-economic factors and cell phone usage. In: ICTD’12, Atlanta, GA, USA, March 2012

    Google Scholar 

  12. Froehlich, J., Chen, M.Y., Consolvo, S., Harrison, B., Landay, J.A.: MyExperience: a system for in situ tracing and capturing of user feedback on mobile phones. In: MobiSys’07, Puerto Rico, USA, June 2007

    Google Scholar 

  13. Froehlich, J., Dillahunt, T., Klasnja, P., Mankoff, J., Consolvo, S., Harrison, B., Landay, J.A.: UbiGreen: investigating a mobile tool for tracking and supporting green transportation habits. In: ACM CHI’09, Boston, MA, USA, April 2009

    Google Scholar 

  14. Gaggioli, A., Pioggia, G., Tartarisco, G., Baldus, G., Corda, D., Cipresso, P., Riva, G.: A mobile data collection platform for mental health research. Pers. Ubiquitous Comput. 17(2), 241–251 (2013)

    Article  Google Scholar 

  15. Google’s Activity Recognition Application. http://developer.android.com/training/location/activity-recognition.html

  16. Google Now. http://www.google.com/landing/now/ (2014). Accessed 15 Dec 2014

  17. Gosling, S.D., Vazire, S., Srivastava, S., John, O.P.: Should we trust web-based studies? a comparative analysis of six preconceptions about internet questionnaires. Am. Psychol. 59(2), (2004)

    Google Scholar 

  18. Hargood, C., Pejovic, V., Morrison, L., Michaelides, D.T., Musolesi, M., Yardley, L., Weal, M.: The UBhave framework: dynamic pervasive applications for behavioural psychology. In: Mobiquitous’14 (poster session), London, UK, Dec 2014

    Google Scholar 

  19. Hartung, C., Lerer, A., Anokwa, Y., Tseng, C., Brunette, W., Borriello, G.: Open data kit: tools to build information services for developing regions. In: ACM DEV’10, London, UK, Dec 2010

    Google Scholar 

  20. Hektner, J.M., Schmidt, J.A., Csikszentmihalyi, M.: Experience Sampling Method: Measuring the Quality of Everyday Life. Sage Publications, Thousand Oaks, CA, USA (2006)

    Google Scholar 

  21. Hicks, J., Ramanathan, N., Kim, D., Monibi, M., Selsky, J., Hansen, M., Estrin, D.: AndWellness: an open mobile system for activity and experience sampling. In: WirelessHealth’10, La Jolla, CA, USA, Oct 2010

    Google Scholar 

  22. Ho, J., Intille, S.S.: Using context-aware computing to reduce the perceived burden of interruptions from mobile devices. In: CHI’05, Portland, OR, USA, April 2005

    Google Scholar 

  23. Intille, S.S., Rondoni, J., Kukla, C., Ancona, I., Bao, L.: A context-aware experience sampling tool. In: CHI’03 (Extended Abstracts), Lauderdale, FL, USA, April 2003

    Google Scholar 

  24. Kapoor, A., Horvitz, E.: Experience sampling for building predictive user models: a comparative study. In: CHI’08, Florence, Italy, April 2008

    Google Scholar 

  25. Kubey, R., Csikszentmihalyi, M.: Television and the Quality of Life: How Viewing Shapes Everyday Experience. Routledge (1990)

    Google Scholar 

  26. Lane, N.D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T., Campbell, A.T.: A survey of mobile phone sensing. IEEE Commun. Mag. 48, 140–150 (2010)

    Article  Google Scholar 

  27. Lane, N.D., Mohammod, M., Lin, M., Yang, X., Lu, H., Ali, S., Doryab, A., Berke, E., Choudhury, T., Campbell, A.: Bewell: a smartphone application to monitor, model and promote wellbeing. In: PervasiveHealth’11, pp. 23–26 (2011)

    Google Scholar 

  28. Lathia, N., Pejovic, V., Rachuri, K., Mascolo, C., Musolesi, M., Rentfrow, P.J.: Smartphones for large-scale behaviour change intervention. IEEE Pervasive Comput. 12(3), (2013)

    Google Scholar 

  29. Lathia, N., Rachuri, K., Mascolo, C., Rentfrow, P.: Contextual dissonance: design bias in sensor-based experience sampling methods. In: UbiComp’13, Zurich, Switzerland, Sept 2013

    Google Scholar 

  30. Lathia, N., Rachuri, K.K., Mascolo, C., Roussos, G.: Open source smartphone libraries for computational social science. In: MCSS’13, Zurich, Switzerland, Sept 2013

    Google Scholar 

  31. Lazer, D., Pentland, A., Adamic, L., Aral, S., Barabasi, A., Brewer, D., Christakis, N., Contractor, N., Fowler, J., Gutmann, M., et al.: Life in the network: the coming age of computational social science. Science 323(5915), 721 (2009)

    Article  Google Scholar 

  32. Lu, H., Frauendorfer, D., Rabbi, M., Mast, M.S., Chittaranjan, G.T., Campbell, A.T., Gatica-Perez, D., Choudhury, T.: Stresssense: detecting stress in unconstrained acoustic environments using smartphones. In: UbiComp’12, pp. 351–360. ACM (2012)

    Google Scholar 

  33. Mason, W., Suri, S.: Conducting behavioral research on amazon’s mechanical turk. Behav. Res. Methods 44(1), 1–23 (2012)

    Article  Google Scholar 

  34. Mehl, M.R., Conner, T.S. (ed.): Handbook of Research Methods for Studying Daily Life. Guilford Publications (2013)

    Google Scholar 

  35. Mehrotra, A., Pejovic, V., Musolesi, M.: SenSocial: a middleware for integrating online social networks and mobile sensing data streams. In: Middleware’14, Bordeaux, France, Dec 2014

    Google Scholar 

  36. Mehrotra, A., Vermeulen, J., Pejovic, V., Musolesi, M.: Ask, but don’t interrupt: the case for interruptibility-aware mobile experience sampling. In: 4th ACM Workshop on Mobile Systems for Computational Social Science (ACM MCSS’15) (2015)

    Google Scholar 

  37. Miller, G.: The smartphone psychology Manifesto. Perspect. Psychol. Sci. 7(3), 221–237 (2012)

    Article  Google Scholar 

  38. Miluzzo, E., Lane, N.D., Fodor, K., Peterson, R., Lu, H., Musolesi, M., Eisenman, S.B., Zheng, X., Campbell, A.T.: Sensing meets mobile social networks: the design, implementation and evaluation of the cenceme application. In: SenSys’08, pp. 337–350. ACM (2008)

    Google Scholar 

  39. Morrison, L.G., Hargood, C., Lin, S.X., Dennison, L., Joseph, J., Hughes, S., Michaelides, D.T., Johnston, D., Johnston, M., Michie, S., et al.: Understanding usage of a hybrid website and smartphone app for weight management: a mixed-methods study. J. Med. Internet Res. 16(10), (2014)

    Google Scholar 

  40. Pejovic, V., Musolesi, M.: Anticipatory mobile computing for behaviour change interventions. In: 3rd ACM Workshop on Mobile Systems for Computational Social Science (ACM MCSS’14), Seattle, WA, USA (2014)

    Google Scholar 

  41. Pejovic, V., Musolesi, M.: InterruptMe: designing intelligent prompting mechanisms for pervasive applications. In: UbiComp’14, Seattle, WA, USA, Sept 2014

    Google Scholar 

  42. Phithakkitnukoon, S., Dantu, R., Claxton, R., Eagle, N.: Behavior-based adaptive call predictor. ACM Trans. Auton. Adapt. Syst. 6(3), 21 (2011)

    Article  Google Scholar 

  43. Rachuri, K.K., Musolesi, M., Mascolo, C., Rentfrow, J., Longworth, C., Aucinas, A.: EmotionSense: a mobile phones based adaptive platform for experimental social psychology research. In: UbiComp’10, Copenhagen, Denmark, ACM, Sept 2010

    Google Scholar 

  44. Rachuri, K.K., Mascolo, C., Musolesi, M., Rentfrow, P.J.: SociableSense: exploring the trade-offs of adaptive sampling and computation offloading for social sensing. In: MobiCom’11, Las Vegas, NV, USA, Sept 2011

    Google Scholar 

  45. Ramanathan, N., Alquaddoomi, F., Falaki, H., George, D., Hsieh, C., Jenkins, J., Ketcham, C., Longstaff, B., Ooms, J., Selsky, J., Tangmunarunkit, H., Estrin, D.: Ohmage: an open mobile system for activity and experience sampling. In: PervasiveHealth’12, San Diego, CA, USA, May 2012

    Google Scholar 

  46. Reis, H.T., Gable, S.L.: Event-sampling and other methods for studying everyday experience. In: Handbook of Research Methods in Social and Personality, Psychology, pp. 190–222 (2000)

    Google Scholar 

  47. Rosen, R.: Anticipatory Systems. Pergamon Press, Oxford, UK (1985)

    MATH  Google Scholar 

  48. Sadilek, A., Krumm, J.: Far out: predicting long-term human mobility. In: AAAI’12, Toronto, Canada, July 2012

    Google Scholar 

  49. Ter Hofte, G.H.: Xensible interruptions from your mobile phone. In: Mobile HCI’07, Singapore, Sept 2007

    Google Scholar 

  50. Trull, T.J., Ebner-Priemer, U.: Ambulatory assessment. Annu. Rev. Clin. Psychol. 9(151), (2013)

    Google Scholar 

  51. Turner, J.C., Meyer, D.K., Cox, K.E., Logan, C., DiCintio, M., Thomas, C.T.: Creating contexts for involvement in mathematics. J. Educ. Psychol. 90(4), 730 (1998)

    Article  Google Scholar 

  52. Yardley, L., Joseph, J., Michie, S., Weal, M., Wills, G., Little, P.: Evaluation of a web-based intervention providing tailored advice for self-management of minor respiratory symptoms: exploratory randomized controlled trial. J. Med. Internet Res. 12(4), e66 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported through the EPSRC grants “UBhave: ubiquitous and social computing for positive behaviour change” (EP/I032673/1) and “Trajectories of Depression: Investigating the Correlation between Human Mobility Patterns and Mental Health Problems by means of Smartphones” (P/L006340/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veljko Pejovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pejovic, V., Lathia, N., Mascolo, C., Musolesi, M. (2016). Mobile-Based Experience Sampling for Behaviour Research. In: Tkalčič, M., De Carolis, B., de Gemmis, M., Odić, A., Košir, A. (eds) Emotions and Personality in Personalized Services. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-31413-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31413-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31411-2

  • Online ISBN: 978-3-319-31413-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics