Abstract
Deep neural networks have achieved state-of-the-art performance for a variety of pattern-recognition tasks. In particular, the deep convolutional neural network (CNN), which is composed of several convolutional layers with a nonlinear activation function, pooling layers, and fully connected layers or an optional global average pooling layer, has received significant attention and is widely used in computer vision. Some research is now replacing a top fully connected layer with global pooling to avoid overfitting in the fully connected layers and to achieve regularization. This replacement is very important because global pooling with additional convolutional layers can eliminate restrictions on the necessity for fixed-size or fixed-length input in the fully connected layers. In this paper, the top global pooling layer is focused on, which is used in place of the fully connected layer and creates a simple and effective pooling operation called random crop (RC) pooling. Additionally, how to attain regularization in the top RC pooling layer is discussed. RC pooling randomly crops the feature maps so that only the images with sufficiently scaled and centered objects can be well-trained. This approach achieves comparable accuracy on the CIFAR-10/100 and MNIST.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Agostinelli, F., Hoffman, M., Sadowski, P., Baldi, P.: Learning activation functions to improve deep neural networks (2014). arXiv:1412.6830
Bruna, J., Szlam, A., LeCun, Y.: Signal recovery from pooling representations (2013). arXiv:1311.4025
Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.: Bing: binarized normed gradients for objectness estimation at 300fps. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3286–3293. IEEE (2014)
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009, pp. 248–255. IEEE (2009)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 580–587. IEEE (2014)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)
Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks (2013). arXiv:1302.4389
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference on Multimedia, pp. 675–678. ACM (2014)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)
LeCun, Y., Boser, B., Denker, J.S., Henderson, D., Howard, R.E., Hubbard, W., Jackel, L.D.: Backpropagation applied to handwritten zip code recognition. Neural comput. 1(4), 541–551 (1989)
Lee, C.Y., Xie, S., Gallagher, P., Zhang, Z., Tu, Z.: Deeply-supervised nets (2014). arXiv:1409.5185
Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3367–3375 (2015)
Lin, M., Chen, Q., Yan, S.: Network in network (2013). arXiv:1312.4400
Lin, T.Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L.: Microsoft coco: common objects in context. In: Computer Vision—ECCV 2014, pp. 740–755. Springer (2014)
Pinheiro, P.O., Collobert, R., Dollar, P.: Learning to segment object candidates (2015). arXiv:1506.06204
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions (2014). arXiv:1409.4842
Uijlings, J.R., van de Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. Int. J. Comput. Vis. 104(2), 154–171 (2013)
Wan, L., Zeiler, M., Zhang, S., Cun, Y.L., Fergus, R.: Regularization of neural networks using dropconnect. In: Proceedings of the 30th International Conference on Machine Learning (ICML-13), pp. 1058–1066 (2013)
Zeiler, M.D., Fergus, R.: Stochastic pooling for regularization of deep convolutional neural networks (2013). arXiv:1301.3557
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Computer Vision–ECCV 2014, pp. 391–405. Springer (2014)
Acknowledgments
This research was supported by the MOTIE (The Ministry of Trade, Industry and Energy), Korea, under the Technology Innovation Program supervised by KEIT (Korea Evaluation Institute of Industrial Technology), 10045252, Development of robot task intelligence technology.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing Switzerland
About this paper
Cite this paper
Lee, Y., Kim, J., Jung, M., Kim, J. (2017). Making a More Reliable Classifier via Random Crop Pooling. In: Kim, JH., Karray, F., Jo, J., Sincak, P., Myung, H. (eds) Robot Intelligence Technology and Applications 4. Advances in Intelligent Systems and Computing, vol 447. Springer, Cham. https://doi.org/10.1007/978-3-319-31293-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-31293-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31291-0
Online ISBN: 978-3-319-31293-4
eBook Packages: EngineeringEngineering (R0)