Nothing Special   »   [go: up one dir, main page]

Skip to main content

Using Bayesian Networks for Knowledge Representation and Evaluation in Intelligent Tutoring Systems

  • Conference paper
  • First Online:
New Advances in Information Systems and Technologies

Abstract

Assessing knowledge acquisition by the student is a main task of an Intelligent Tutoring System. Assessment is needed in order to adapt learning materials and activities to students capacities. To evaluate knowledge acquisition, different techniques can be used, such as probabilistic inference. In this paper we present a proposal based on Bayesian Networks to infer the level of knowledge possessed by the student. We implemented a kind of test to know what student knows. During the test, the software system chooses the new questions based on the responses to the previous ones, that is, the software system makes an adaption in real time. To get the inferences, we use a network of concepts, which contains the relationships between those concepts. This work is focused on the design of the Bayesian Network and the algorithm to do inferences about students knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carbonell, J.R.: AI in CAI: an artificial intelligence approach to computer assisted instruction. IEEE transaction on Man. Machine System 11, 190–202 (1970)

    Google Scholar 

  2. Cataldi, Z., Lage, F.J.: Modelado del Estudiante en Sistemas Tutores Inteligentes. Revista Iberoamericana de Tecnologia en Educación y Educación enTecnologa 5, 29–38 (2010)

    Google Scholar 

  3. Cheah, W.P., Kim, K.Y., Yang, H.J., Kim, S.H., Kim, J.S.: Fuzzy Cognitive Map and Bayesian Belief Network for Causal Knowledge Engineering: A Comparative Study. The KIPS Transactions:PartB 15B(2), 147–158 (2008)

    Google Scholar 

  4. Conejo, R., Millán, E., Pérez, J., Trella, M.: Modelado del alumno: un enfoque bayesiano. Revista Iberoamericana de Inteligencia Artificial 12, 50–58 (2001)

    Google Scholar 

  5. De Bruyn, E., Mostert, E., Van Schoor, a.: Computer-based testing - The ideal tool to assess on the different levels of Bloom’s taxonomy. 2011 14th International Conference on Interactive Collaborative Learning, ICL 2011 - 11th International Conference Virtual University, VU’11 (September), 444–449 (2011)

    Google Scholar 

  6. Goguadze, G., Sosnovsky, S., Isotani, S., McLaren, B.M.: Evaluating a Bayesian Student Model of Decimal Misconceptions. In: Proceedings of the 4th International Conference on Educational Data Mining. p. 5 (2011)

    Google Scholar 

  7. Huertas, C., Juárez-Ramrez, R.: Developing an Intelligent Tutoring System for Vehicle Dynamics. Procedia - Social and Behavioral Sciences 106, 838–847 (2013)

    Google Scholar 

  8. Kammerdiner, A.: Bayesian networks Bayesian Networks. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization SE - 32, pp. 187–196. Springer US (2009)

    Google Scholar 

  9. Liu, Z., Wang, H.: A Modeling Method Based on Bayesian Networks in Intelligent Tutoring System. Structure pp. 967–972 (2007)

    Google Scholar 

  10. Luckey, M., Engels, G.: High-Quality Specification of Self-Adaptive Software Systems pp. 143–152 (2013)

    Google Scholar 

  11. Millán, E.: Sistema bayesiano para modelado del alumno. Ph.D. thesis (2000)

    Google Scholar 

  12. Millán, E., Descalço, L., Castillo, G., Oliveira, P., Diogo, S.: Using Bayesian networks to improve knowledge assessment. Computers & Education 60(1), 436–447 (2013)

    Google Scholar 

  13. Misirli, A.T., Bener, A.B.: Bayesian networks for evidence-based decision-making in software engineering. IEEE Transactions on Software Engineering 40(6), 533–554 (2014)

    Google Scholar 

  14. Radenkovic, B.: Web portal for adaptive e-learning. Telecommunication in Modern Satellite Cable and Broadcasting Services (TELSIKS), 2011 10th International Conference on pp. 365 – 368 (2011)

    Google Scholar 

  15. Ramrez-Noriega, A., Juárez-Ramrez, R., Huertas, C., Martnez-Ramrez, Y.: A Methodology for building Bayesian Networks for Knowledge Representation in Intelligent Tutoring Systems. In: Congreso Internacional de Investigación e Innovación en Ingeniera de Software 2015. pp. 124–133. San Lus Potos (2015)

    Google Scholar 

  16. Razek, M.a., Bardesi, H.J.a.: Adaptive course for mobile learning. Proceedings - 5th International Conference on Computational Intelligence, Communication Systems, and Networks, CICSyN 2013 pp. 328–333 (2013)

    Google Scholar 

  17. Rivas Navarro, M.: Procesos cognitivos y aprendizaje significativo. BOCM, Madrid (2008)

    Google Scholar 

  18. Rodrigues, F.H., Bez, M.R., Flores, C.D.: Generating Bayesian networks from medical ontologies. 2013 8th Computing Colombian Conference, 8CCC 2013 (2013)

    Google Scholar 

  19. Russell, S., Norving, P.: Artificial Intelligence: A Modern Approach. 3rd edit. edn. (2009)

    Google Scholar 

  20. Santhi, R., Priya, B., Nandhini, J.: Review of intelligent tutoring systems using bayesian approach. arXiv preprint arXiv:1302.7081 (2013)

  21. Taborda, H.: Modelos bayesianos de inferencia psicológica: Cómo predecir acciones en situaciones de incertidumbre? Universitas Psychologica 9(2), 495–507 (2010)

    Google Scholar 

  22. Torabi, R., Moradi, P., Khantaimoori, A.R.: Predict Student Scores Using Bayesian Networks. Procedia - Social and Behavioral Sciences 46, 4476–4480 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Alan, RN., Reyes, JR., Yobani, MR., Samantha, J., Sergio, I. (2016). Using Bayesian Networks for Knowledge Representation and Evaluation in Intelligent Tutoring Systems. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Mendonça Teixeira, M. (eds) New Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-319-31232-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31232-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31231-6

  • Online ISBN: 978-3-319-31232-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics