Abstract
Assessing knowledge acquisition by the student is a main task of an Intelligent Tutoring System. Assessment is needed in order to adapt learning materials and activities to students capacities. To evaluate knowledge acquisition, different techniques can be used, such as probabilistic inference. In this paper we present a proposal based on Bayesian Networks to infer the level of knowledge possessed by the student. We implemented a kind of test to know what student knows. During the test, the software system chooses the new questions based on the responses to the previous ones, that is, the software system makes an adaption in real time. To get the inferences, we use a network of concepts, which contains the relationships between those concepts. This work is focused on the design of the Bayesian Network and the algorithm to do inferences about students knowledge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Carbonell, J.R.: AI in CAI: an artificial intelligence approach to computer assisted instruction. IEEE transaction on Man. Machine System 11, 190–202 (1970)
Cataldi, Z., Lage, F.J.: Modelado del Estudiante en Sistemas Tutores Inteligentes. Revista Iberoamericana de Tecnologia en Educación y Educación enTecnologa 5, 29–38 (2010)
Cheah, W.P., Kim, K.Y., Yang, H.J., Kim, S.H., Kim, J.S.: Fuzzy Cognitive Map and Bayesian Belief Network for Causal Knowledge Engineering: A Comparative Study. The KIPS Transactions:PartB 15B(2), 147–158 (2008)
Conejo, R., Millán, E., Pérez, J., Trella, M.: Modelado del alumno: un enfoque bayesiano. Revista Iberoamericana de Inteligencia Artificial 12, 50–58 (2001)
De Bruyn, E., Mostert, E., Van Schoor, a.: Computer-based testing - The ideal tool to assess on the different levels of Bloom’s taxonomy. 2011 14th International Conference on Interactive Collaborative Learning, ICL 2011 - 11th International Conference Virtual University, VU’11 (September), 444–449 (2011)
Goguadze, G., Sosnovsky, S., Isotani, S., McLaren, B.M.: Evaluating a Bayesian Student Model of Decimal Misconceptions. In: Proceedings of the 4th International Conference on Educational Data Mining. p. 5 (2011)
Huertas, C., Juárez-Ramrez, R.: Developing an Intelligent Tutoring System for Vehicle Dynamics. Procedia - Social and Behavioral Sciences 106, 838–847 (2013)
Kammerdiner, A.: Bayesian networks Bayesian Networks. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization SE - 32, pp. 187–196. Springer US (2009)
Liu, Z., Wang, H.: A Modeling Method Based on Bayesian Networks in Intelligent Tutoring System. Structure pp. 967–972 (2007)
Luckey, M., Engels, G.: High-Quality Specification of Self-Adaptive Software Systems pp. 143–152 (2013)
Millán, E.: Sistema bayesiano para modelado del alumno. Ph.D. thesis (2000)
Millán, E., Descalço, L., Castillo, G., Oliveira, P., Diogo, S.: Using Bayesian networks to improve knowledge assessment. Computers & Education 60(1), 436–447 (2013)
Misirli, A.T., Bener, A.B.: Bayesian networks for evidence-based decision-making in software engineering. IEEE Transactions on Software Engineering 40(6), 533–554 (2014)
Radenkovic, B.: Web portal for adaptive e-learning. Telecommunication in Modern Satellite Cable and Broadcasting Services (TELSIKS), 2011 10th International Conference on pp. 365 – 368 (2011)
Ramrez-Noriega, A., Juárez-Ramrez, R., Huertas, C., Martnez-Ramrez, Y.: A Methodology for building Bayesian Networks for Knowledge Representation in Intelligent Tutoring Systems. In: Congreso Internacional de Investigación e Innovación en Ingeniera de Software 2015. pp. 124–133. San Lus Potos (2015)
Razek, M.a., Bardesi, H.J.a.: Adaptive course for mobile learning. Proceedings - 5th International Conference on Computational Intelligence, Communication Systems, and Networks, CICSyN 2013 pp. 328–333 (2013)
Rivas Navarro, M.: Procesos cognitivos y aprendizaje significativo. BOCM, Madrid (2008)
Rodrigues, F.H., Bez, M.R., Flores, C.D.: Generating Bayesian networks from medical ontologies. 2013 8th Computing Colombian Conference, 8CCC 2013 (2013)
Russell, S., Norving, P.: Artificial Intelligence: A Modern Approach. 3rd edit. edn. (2009)
Santhi, R., Priya, B., Nandhini, J.: Review of intelligent tutoring systems using bayesian approach. arXiv preprint arXiv:1302.7081 (2013)
Taborda, H.: Modelos bayesianos de inferencia psicológica: Cómo predecir acciones en situaciones de incertidumbre? Universitas Psychologica 9(2), 495–507 (2010)
Torabi, R., Moradi, P., Khantaimoori, A.R.: Predict Student Scores Using Bayesian Networks. Procedia - Social and Behavioral Sciences 46, 4476–4480 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Alan, RN., Reyes, JR., Yobani, MR., Samantha, J., Sergio, I. (2016). Using Bayesian Networks for Knowledge Representation and Evaluation in Intelligent Tutoring Systems. In: Rocha, Á., Correia, A., Adeli, H., Reis, L., Mendonça Teixeira, M. (eds) New Advances in Information Systems and Technologies. Advances in Intelligent Systems and Computing, vol 444. Springer, Cham. https://doi.org/10.1007/978-3-319-31232-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-31232-3_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31231-6
Online ISBN: 978-3-319-31232-3
eBook Packages: EngineeringEngineering (R0)