Abstract
Automatic Speaker Verification (ASV) is a highly unbalanced binary classification problem, in which any given speaker must be verified against everyone else. We apply Genetic programming (GP) to this problem with the aim of both prediction and inference. We examine the generalisation of evolved programs using a variety of fitness functions and data sampling techniques found in the literature. A significant difference between train and test performance, which can indicate overfitting, is found in the evolutionary runs of all to-be-verified speakers. Nevertheless, in all speakers, the best test performance attained is always superior than just merely predicting the majority class. We examine which features are used in good-generalising individuals. The findings can inform future applications of GP or other machine learning techniques to ASV about the suitability of feature-extraction techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
\(I(\cdot )\) is the indicator function.
- 3.
The number of examples correctly classified as a fraction of the total number of training examples.
References
Agapitos, A., Brabazon, A., O’Neill, M.: Controlling overfitting in symbolic regression based on a bias/variance error decomposition. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012, Part I. LNCS, vol. 7491, pp. 438–447. Springer, Heidelberg (2012)
Batista, G., Prati, R.C., Monard, M.C.: A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 6(1), 20–29 (2004)
Batista, G.E.A.P.A., Prati, R.C., Monard, M.C.: Balancing strategies and class overlapping. In: Famili, A.F., Kok, J.N., Peña, J.M., Siebes, A., Feelders, A. (eds.) IDA 2005. LNCS, vol. 3646, pp. 24–35. Springer, Heidelberg (2005)
Bhowan, U., Johnston, M., Zhang, M.: Developing new fitness functions in genetic programming for classification with unbalanced data. IEEE Trans. Syst. Man Cybern. B Cybern. 42(2), 406–421 (2012)
Bhowan, U., Johnston, M., Zhang, M., Yao, X.: Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE Trans. Evol. Comput. 17(3), 368–386 (2013)
Burton, D.: Text-dependent speaker verification using vector quantization source coding. IEEE Trans. Acoust. Speech Signal Process. 35(2), 133–143 (1987)
Campbell, W.M., Sturim, D.E., Reynolds, D.A.: Support vector machines using gmm supervectors for speaker verification. IEEE Signal Process. Lett. 13(5), 308–311 (2006)
Curry, R., Lichodzijewski, P., Heywood, M.I.: Scaling genetic programming to large datasets using hierarchical dynamic subset selection. IEEE Trans. Syst. Man Cybern. B Cybern. 37(4), 1065–1073 (2007)
Day, P., Nandi, A.K.: Robust text-independent speaker verification using genetic programming. IEEE Trans. Audio Speech Lang. Process. 15(1), 285–295 (2007)
Dehak, N., Kenny, P.J., Dehak, R., Dumouchel, P., Ouellet, P.: Front-end factor analysis for speaker verification. IEEE Trans. Audio Speech Lang. Process. 19(4), 788–798 (2011)
Doucette, J., Heywood, M.I.: GP classification under imbalanced data sets: active sub-sampling and auc approximation. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., De Falco, I., Della Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 266–277. Springer, Heidelberg (2008)
Eggermont, J., Eiben, A.E., van Hemert, J.: Adapting the fitness function in gp for data mining. In: Langdon, W.B., Fogarty, T.C., Nordin, P., Poli, R. (eds.) EuroGP 1999. LNCS, vol. 1598, pp. 193–202. Springer, Heidelberg (1999)
Garofolo, J.S., Lamel, L.F., Fisher, W.M., Fiscus, J.G., Pallett, D.S.: Darpa timit acoustic-phonetic continous speech corpus cd-rom. nist speech disc 1–1.1. NASA STI/Recon technical report n 93, 27403 (1993)
Gathercole, C., Ross, P.: Dynamic training subset selection for supervised learning in genetic programming. PPSN III. LNCS, vol. 866, pp. 312–321. Springer, Jerusalem (1994)
Gonçalves, I., Silva, S., Melo, J.B., Carreiras, J.M.B.: Random sampling technique for overfitting control in genetic programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P., Cotta, C. (eds.) EuroGP 2012. LNCS, vol. 7244, pp. 218–229. Springer, Heidelberg (2012)
Hermansky, H.: Perceptual linear predictive (plp) analysis of speech. J. Acoust. Soc. Am. 87, 1738 (1990)
Hermansky, H., Morgan, N., Bayya, A., Kohn, P.: Rasta-plp speech analysis technique. In: IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 1992, vol. 1, pp. 121–124. IEEE (1992)
Holmes, J.H.: Differential negative reinforcement improves classifier system learning rate in two-class problems with unequal base rates. In: 3rd Annual Conference on Genetic Programming, pp. 635–642. ICSC Academic Press (1998)
Huang, X., Acero, A., Hon, H.W., et al.: Spoken Language Processing, vol. 15. Prentice Hall PTR, New Jersey (2001)
Kenny, P., Boulianne, G., Ouellet, P., Dumouchel, P.: Factor analysis simplified. In: Proceedings of ICASSP, vol. 1, pp. 637–640. Citeseer (2005)
Kenny, P., Boulianne, G., Ouellet, P., Dumouchel, P.: Joint factor analysis versus eigenchannels in speaker recognition. IEEE Trans. Audio Speech Lang. Process. 15(4), 1435–1447 (2007)
Kinnunen, T., Li, H.: An overview of text-independent speaker recognition: from features to supervectors. Speech Commun. 52(1), 12–40 (2010)
Kubat, M., Matwin, S.: Addressing the curse of imbalanced training sets: one-sided selection. In: Fisher, D.H. (ed.) Proceedings of the Fourteenth International Conference on Machine Learning (ICML 1997), Nashville, Tennessee, USA, July 8–12, 1997, pp. 179–186. Morgan Kaufmann (1997)
Lartillot, O., Toiviainen, P.: A matlab toolbox for musical feature extraction from audio. In: International Conference on Digital Audio Effects, pp. 237–244 (2007)
Liares, L.R., Garca-Mateo, C., Alba-Castro, J.L.: On combining classifiers for speaker authentication. Pattern Recogn. 36(2), 347–359 (2003)
Logan, B., et al.: Mel frequency cepstral coefficient for music modelling. In: ISMIR (2000)
Loughran, R., Walker, J., O’Neill, M., McDermott, J.: Genetic programming for musical sound analysis. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 176–186. Springer, Heidelberg (2012)
Makhoul, J.: Linear prediction: a tutorial review. Proc. IEEE 63(4), 561–580 (1975)
Márquez-Vera, C., Cano, A., Romero, C., Ventura, S.: Predicting student failure at school using genetic programming and different data mining approaches with high dimensional and imbalanced data. Appl. Intell. 38(3), 315–330 (2013)
O’Shaughnessy, D.: Speech communication: human and machine. Digital Signal Processing. Addison-Wesley, Reading (1987)
Reynolds, D.A., Quatieri, T.F., Dunn, R.B.: Speaker verification using adapted gaussian mixture models. Digital sig. process 10(1), 19–41 (2000)
Sivaram, G.S., Thomas, S., Hermansky, H.: Mixture of auto-associative neural networks for speaker verification. In: INTERSPEECH, pp. 2381–2384 (2011)
Song, D., Heywood, M.I., Zincir-Heywood, A.N.: Training genetic programming on half a million patterns: an example from anomaly detection. IEEE Trans. Evol. Comput. 9(3), 225–239 (2005)
Winkler, S.M., Affenzeller, M., Wagner, S.: Advanced genetic programming based machine learning. J. Math. Model. Algorithms 6(3), 455–480 (2007)
Acknowledgments
This work was carried out as a collaboration of projects funded by Science Foundation Ireland under grant Grant Numbers 08/SRC/FM1389 and 13/IA/1850.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Loughran, R., Agapitos, A., Kattan, A., Brabazon, A., O’Neill, M. (2016). Speaker Verification on Unbalanced Data with Genetic Programming. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_47
Download citation
DOI: https://doi.org/10.1007/978-3-319-31204-0_47
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31203-3
Online ISBN: 978-3-319-31204-0
eBook Packages: Computer ScienceComputer Science (R0)