Abstract
This paper proposes an evolutionary algorithm for evolving game bots that eschews an explicit fitness function using instead a match between individuals called joust and implemented as a selection mechanism where only the winner survives. This algorithm has been designed as an optimization approach to generate the behavioural engine of bots for the RTS game Planet Wars using Genetic Programming and has two objectives: first, to deal with the noisy nature of the fitness function and second, to obtain more general bots than those evolved using a specific opponent. In addition, avoiding the explicit evaluation step reduce the number of combats to perform during the evolution and thus, the algorithm time consumption is decreased. Results show that the approach performs converges, is less sensitive to noise than other methods and it yields very competitive bots in the comparison against other bots available in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Although we use this term, note that the game is always performed in real time.
References
Avery, P., Louis, S.: Co-evolving team tactics for a real-time strategy game. In: Proceedings of the 2010 IEEE Congress on Evolutionary Computation (CEC 2010), pp. 1–8 (2010)
Avery, P.M., Michalewicz, Z.: Adapting to human game play. In: IEEE Symposium on Computational Intelligence and Games (CIG 2008), pp. 8–15 (2008)
Cardona, A., Togelius, J., Nelson, M.: Competitive coevolution in Ms. Pac-Man. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2013), pp. 1403–1410 (2013)
Collazo, M.N., Cotta, C., Leiva, A.J.F.: Virtual player design using self-learning via competitive coevolutionary algorithms. Nat. Comput. 13(2), 131–144 (2014)
Cook, M., Colton, S., Gow, J.: Initial results from co-operative co-evolution for automated platformer design. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 194–203. Springer, Heidelberg (2012)
Cotta, C., Fernández-Leiva, A.J., Sánchez, A.F., Lara-Cabrera, R.: Car setup optimization via evolutionary algorithms. In: Rojas, I., Joya, G., Cabestany, J. (eds.) IWANN 2013, Part II. LNCS, vol. 7903, pp. 346–354. Springer, Heidelberg (2013)
Darwin, C.: On the Origin of Species by Means of Natural Selection. Murray, London (1859)
Esparcia-Alcázar, A., Moravec, J.: Fitness approximation for bot evolution in genetic programming. Soft Comput. 17(8), 1479–1487 (2013)
Fernández-Ares, A., García-Sánchez, P., Mora, A.M., Merelo, J.J.: Adaptive bots for real-time strategy games via map characterization. In: 2012 IEEE Conference on Computational Intelligence and Games, CIG 2012, pp. 417–721. IEEE (2012)
Fernández-Ares, A., Mora, A.M., Merelo, J.J., García-Sánchez, P., Fernandes, C.: Optimizing player behavior in a real-time strategy game using evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, 2011 CEC 2011, pp. 2017–2024 June 2011
Garc\’ıa-Sánchez, P., Fernández-Ares, A., Mora, A.M., Castillo, P.A., González, J., Guerv, J.J.M.: Tree Depth Influence in Genetic Programming for Generation of Competitive Agents for RTS Games. In: Esparcia-Alcázar, A.I., Mora, A.M. (eds.) EvoApplications 2014. LNCS, vol. 8602, pp. 411–421. Springer, Heidelberg (2014)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Boston (1989)
Jaśkowski, W., Krawiec, K., Wieloch, B.: Winning ant wars: evolving a human-competitive game strategy using fitnessless selection. In: O’Neill, M., Vanneschi, L., Gustafson, S., Esparcia Alcázar, A.I., Falco, I., Cioppa, A., Tarantino, E. (eds.) EuroGP 2008. LNCS, vol. 4971, pp. 13–24. Springer, Heidelberg (2008)
Kim, Y., Kim, J., Kim, Y.: A tournament-based competitive coevolutionary algorithm. Appl. Intell. 20(3), 267–281 (2004)
Koza, J.R.: Genetic Programming: On the Programming of Computers By Means of Natural Selection. MIT Press, Cambridge (1992)
Lara-Cabrera, R., Cotta, C., Leiva, A.J.F.: On balance and dynamism in procedural content generation with self-adaptive evolutionary algorithms. Nat. Comput. 13(2), 157–168 (2014)
Livingstone, D.: Coevolution in hierarchical ai for strategy games. In: IEEE Symposium on Computational Intelligence and Games (CIG 2005), IEEE (2005)
Merelo-Guervós, J.J.: Using a Wilcoxon-test based partial order for selectionin evolutionary algorithms with noisy fitness. Technical report, GeNeura group, university of Granada (2014). http://dx.doi.org/10.6084/m9.figshare.974598
Mora, A., Fernández-Ares, A., Guervós, J.M., García-Sánchez, P., Fernandes, C.: Effect of noisy fitness in real-time strategy games player behaviour optimisation using evolutionary algorithms. J. Comput. Sci. Technol. 27(5), 1007–1023 (2012)
Mora, A.M., Fernández-Ares, A., Merelo-Guervós, J.-J., García-Sánchez, P.: Dealing with noisy fitness in the design of a RTS game bot. In: Di Chio, C., Agapitos, A., Cagnoni, S., Cotta, C., de Vega, F.F., Di Caro, G.A., Drechsler, R., Ekárt, A., Esparcia-Alcázar, A.I., Farooq, M., Langdon, W.B., Merelo-Guervós, J.J., Preuss, M., Richter, H., Silva, S., Simões, A., Squillero, G., Tarantino, E., Tettamanzi, A.G.B., Togelius, J., Urquhart, N., Uyar, A.Ş., Yannakakis, G.N. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 234–244. Springer, Heidelberg (2012)
Nogueira, M., Cotta, C., Fernández-Leiva, A.J.: An analysis of hall-of-fame strategies in competitive coevolutionary algorithms for self-learning in RTS games. In: Nicosia, G., Pardalos, P. (eds.) LION 7. LNCS, vol. 7997, pp. 174–188. Springer, Heidelberg (2013)
Paredis, J.: Coevolutionary computation. Artif. Life 2(4), 355–375 (1995)
Pollack, J.B., Blair, A.D.: Co-evolution in the successful learning of backgammon strategy. Mach. Learn. 32, 225–240 (1998)
Rosin, C.D., Belew, R.K.: New methods for competitive coevolution. Evol. Comput. 5(1), 1–29 (1997)
Runarsson, T.P., Lucas, S.M.: Co-evolution versus self-play temporal difference learning for acquiring position evaluation in smallboard go. IEEE Trans. Evol. Comput. 9(6), 628–640 (2005)
Samothrakis, S., Lucas, S.M., Runarsson, T.P., Robles, D.: Coevolving game-playing agents: measuring performance and intransitivities. IEEE Trans. Evol. Comput. 17(2), 213–226 (2013)
Smith, G., Avery, P., Houmanfar, R., Louis, S.: Using co-evolved rts opponents to teach spatial tactics. In: IEEE Symposium on Computational Intelligence and Games (CIG 2010), pp. 146–153 (2010)
Thompson, T., Levine, J., Wotherspoon, R.: Evolution of counter-strategies: Application of co-evolution to texas hold’em poker. In: IEEE Symposium on Computational Intelligence and Games (CIG 2008), pp. 16–22. IEEE (2008)
Togelius, J., Burrow, P., Lucas, S.M.: Multi-population competitive co-evolution of car racing controllers. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC), pp. 4043–4050 (2007)
Whitley, D., Kauth, J.: GENITOR: A different genetic algorithm. In: Proceedings of the 1988 Rocky Mountain Conference on Artificial Intelligence. pp. 118–130. Computer Science Department, Colorado State University (1988)
Ziółko, B., Kruk, M.: Automatic reasoning in the planet wars game. Annales UMCS, Informatica 12(1), 39–45 (2012)
Acknowledgments
This work has been supported in part by projects EPHEMECH (TIN2014-56494-C4-3-P, Spanish Ministerio de Economía y Competitividad), PROY-PP2015-06 (Plan Propio 2015 UGR), PETRA (SPIP2014-01437, funded by Dirección General de Tráfico), CEI2015-MP-V17 (awarded by CEI BioTIC Granada), and PRY142/14 (funded by Fundación Pública Andaluza Centro de Estudios Andaluces en la IX Convocatoria de Proyectos de Investigación).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Fernández-Ares, A., García-Sánchez, P., Mora, A.M., Castillo, P.A., Merelo, J.J. (2016). There Can Be only One: Evolving RTS Bots via Joust Selection. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_35
Download citation
DOI: https://doi.org/10.1007/978-3-319-31204-0_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31203-3
Online ISBN: 978-3-319-31204-0
eBook Packages: Computer ScienceComputer Science (R0)