Abstract
Hybrid methods are a branch of biclustering algorithms that emerge from combining selected aspects of pre-existing approaches. The syncretic nature of their construction enriches the existing methods providing them with new properties. In this paper the concept of hybrid biclustering algorithms is explained. A representative hybrid biclustering algorithm, inspired by neural networks and associative artificial intelligence, is introduced and the results of its application to microarray data are presented. Finally, the scope and application potential for hybrid biclustering algorithms is discussed.
P. Orzechowski—AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Automatics and Bioengineering.
K. Boryczko—AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Computer Science.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Broder, A., Fontoura, M., Josifovski, V., Riedel, L.: A semantic approach to contextual advertising. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 559–566. ACM (2007)
Busygin, S., Prokopyev, O., Pardalos, P.M.: Biclustering in data mining. Comput. Oper. Res. 35(9), 2964–2987 (2008)
de Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Applying biclustering to text mining: an immune-inspired approach. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 83–94. Springer, Heidelberg (2007)
Franca, F.O.D.: Scalable overlapping co-clustering of word-document data, pp. 464–467. IEEE, December 2012
Henriques, R., Madeira, S.: Biclustering with flexible plaid models to unravel interactions between biological processes. IEEE/ACM Trans. Comput. Biol. Bioinf. 12, 738–752 (2015)
Hussain, S.F., Bisson, G., Grimal, C.: An improved co-similarity measure for document clustering. In: Proceedings of the 2010 Ninth International Conference on Machine Learning and Applications, ICMLA 2010, pp. 190–197. IEEE Computer Society, Washington, DC (2010)
Kaiser, S.: Biclustering: methods, software and application. PhD thesis, Ludwig-Maximilians-Universitt Mnchen (2011)
Liang, T.P., Lai, H.J., Ku, Y.C.: Personalized content recommendation and user satisfaction: theoretical synthesis and empirical findings. J. Manag. Inf. Syst. 23(3), 45–70 (2006)
Mimaroglu, S., Uehara, K.: Bit sequences and biclustering of text documents. In: ICDMW, pp. 51–56. IEEE (2007)
Stawarz, M., Michalak, M.: eBi – the algorithm for exact biclustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 327–334. Springer, Heidelberg (2012)
Stawarz, M., Michalak, M.: HRoBi – the algorithm for hierarchical rough biclustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 194–205. Springer, Heidelberg (2013)
Zhang, K., Katona, Z.: Contextual advertising. Mark. Sci. 31(6), 980–994 (2012)
Zhao, H., Wee-Chung Liew, A., Wang, D.Z., Yan, H.: Biclustering analysis for pattern discovery: current techniques, comparative studies and applications. Curr. Bioinf. 7(1), 43–55 (2012)
Eren, K., Deveci, M., et al.: Bbiclustering algorithms for gene expression data. Briefings Bioinf. 14, 279–292 (2012)
Orzechowski, P.: Proximity measures and results validation in biclustering – a survey. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 206–217. Springer, Heidelberg (2013)
Hanczar, B., Nadif, M.: Ensemble methods for biclustering tasks. Pattern Recogn. 45(11), 3938–3949 (2012)
Kotsiantis, S., Pintelas, P.: Combining bagging and boosting. Int. J. Comput. Intell. 1(4), 324–333 (2004)
Pontes, B., Girldez, R., Aguilar-Ruiz, J.S.: Biclustering on expression data: a review. J. Biomed. Inform. 57, 163–180 (2015)
Cheng, Y., Church, G.M.: Biclustering of expression data. Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, vol. 8, pp. 93–103 (2000)
Lazzeroni, L., Owen, A., et al.: Plaid models for gene expression data. Statistica Sinica 12(1), 61–86 (2002)
Murali, T., Kasif, S.: Extracting conserved gene expression motifs from gene expression data. In: Proceedings of Pacific Symposium on Biocomputing, vol. 3, pp. 77–88 (2003)
Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)
Bozdağ, D., Parvin, J.D., Catalyurek, U.V.: A biclustering method to discover co-regulated genes using diverse gene expression datasets. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS, vol. 5462, pp. 151–163. Springer, Heidelberg (2009)
Li, G., Ma, Q., Tang, H., Paterson, A.H., Xu, Y.: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res. 37(15), e101–e101 (2009)
Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinf. 1(1), 24–45 (2004)
Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)
Ghosh, J., Acharya, A.: Cluster ensembles. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(4), 305–315 (2011)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Parvin, H., Minaei-Bidgoli, B., Alinejad-Rokny, H., Punch, W.F.: Data weighing mechanisms for clustering ensembles. Comput. Electr. Eng. 39(5), 1433–1450 (2013)
Lancichinetti, A., Fortunato, S.: Consensus clustering in complex networks. Scientific reports 2 (2012)
Horzyk, A.: Information freedom and associative artificial intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 81–89. Springer, Heidelberg (2012)
Horzyk, A.: How does human-like knowledge come into being in artificial associative systems? In: Proceedings of the 8-th International Conference on Knowledge, Information and Creativity Support Systems, Krakow, Poland (2013)
McCall, M.N., Almudevar, A.: Affymetrix GeneChip microarray preprocessing for multivariate analyses. Brief. Bioinf. 13(5), 536–546 (2012)
Davis, S., Meltzer, P.: GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 14, 1846–1847 (2007)
Gautier, L., Cope, L., Bolstad, B.M., Irizarry, R.A.: Affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3), 307–315 (2004)
Gentleman, R., Carey, V., Huber, W., Hahne, F.: Genefilter: methods for filtering genes from microarray experiments. R package version 1(0) R package version 1.42.0. (2011)
Falcon, S., Gentleman, R.: Using GOstats to test gene lists for GO term association. Bioinformatics 23(2), 257–8 (2007)
Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Series B (Methodol.) 57, 289–300 (1995)
Orzechowski, P., Boryczko, K.: Effective biclustering on gpu-capabilities and constraints. Przeglad Elektrotechniczny 1, 133–6 (2015)
Hanczar, B., Nadif, M.: Study of consensus functions in the context of ensemble methods for biclustering (2013). http://cap2013.sciencesconf.org/21492/document
Acknowledgements
This research was funded by the Polish National Science Center (NCN), grant No. 2013/11/N/ST6/03204. This research was supported in part by PL-Grid Infrastructure.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Orzechowski, P., Boryczko, K. (2016). Hybrid Biclustering Algorithms for Data Mining. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-31204-0_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31203-3
Online ISBN: 978-3-319-31204-0
eBook Packages: Computer ScienceComputer Science (R0)