Nothing Special   »   [go: up one dir, main page]

Skip to main content

Hybrid Biclustering Algorithms for Data Mining

  • Conference paper
  • First Online:
Applications of Evolutionary Computation (EvoApplications 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9597))

Included in the following conference series:

Abstract

Hybrid methods are a branch of biclustering algorithms that emerge from combining selected aspects of pre-existing approaches. The syncretic nature of their construction enriches the existing methods providing them with new properties. In this paper the concept of hybrid biclustering algorithms is explained. A representative hybrid biclustering algorithm, inspired by neural networks and associative artificial intelligence, is introduced and the results of its application to microarray data are presented. Finally, the scope and application potential for hybrid biclustering algorithms is discussed.

P. Orzechowski—AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, Department of Automatics and Bioengineering.

K. Boryczko—AGH University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Department of Computer Science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Broder, A., Fontoura, M., Josifovski, V., Riedel, L.: A semantic approach to contextual advertising. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 559–566. ACM (2007)

    Google Scholar 

  2. Busygin, S., Prokopyev, O., Pardalos, P.M.: Biclustering in data mining. Comput. Oper. Res. 35(9), 2964–2987 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Castro, P.A.D., de França, F.O., Ferreira, H.M., Von Zuben, F.J.: Applying biclustering to text mining: an immune-inspired approach. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds.) ICARIS 2007. LNCS, vol. 4628, pp. 83–94. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Franca, F.O.D.: Scalable overlapping co-clustering of word-document data, pp. 464–467. IEEE, December 2012

    Google Scholar 

  5. Henriques, R., Madeira, S.: Biclustering with flexible plaid models to unravel interactions between biological processes. IEEE/ACM Trans. Comput. Biol. Bioinf. 12, 738–752 (2015)

    Article  Google Scholar 

  6. Hussain, S.F., Bisson, G., Grimal, C.: An improved co-similarity measure for document clustering. In: Proceedings of the 2010 Ninth International Conference on Machine Learning and Applications, ICMLA 2010, pp. 190–197. IEEE Computer Society, Washington, DC (2010)

    Google Scholar 

  7. Kaiser, S.: Biclustering: methods, software and application. PhD thesis, Ludwig-Maximilians-Universitt Mnchen (2011)

    Google Scholar 

  8. Liang, T.P., Lai, H.J., Ku, Y.C.: Personalized content recommendation and user satisfaction: theoretical synthesis and empirical findings. J. Manag. Inf. Syst. 23(3), 45–70 (2006)

    Article  Google Scholar 

  9. Mimaroglu, S., Uehara, K.: Bit sequences and biclustering of text documents. In: ICDMW, pp. 51–56. IEEE (2007)

    Google Scholar 

  10. Stawarz, M., Michalak, M.: eBi – the algorithm for exact biclustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part II. LNCS, vol. 7268, pp. 327–334. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  11. Stawarz, M., Michalak, M.: HRoBi – the algorithm for hierarchical rough biclustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 194–205. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  12. Zhang, K., Katona, Z.: Contextual advertising. Mark. Sci. 31(6), 980–994 (2012)

    Article  Google Scholar 

  13. Zhao, H., Wee-Chung Liew, A., Wang, D.Z., Yan, H.: Biclustering analysis for pattern discovery: current techniques, comparative studies and applications. Curr. Bioinf. 7(1), 43–55 (2012)

    Article  Google Scholar 

  14. Eren, K., Deveci, M., et al.: Bbiclustering algorithms for gene expression data. Briefings Bioinf. 14, 279–292 (2012)

    Article  Google Scholar 

  15. Orzechowski, P.: Proximity measures and results validation in biclustering – a survey. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2013, Part II. LNCS, vol. 7895, pp. 206–217. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Hanczar, B., Nadif, M.: Ensemble methods for biclustering tasks. Pattern Recogn. 45(11), 3938–3949 (2012)

    Article  Google Scholar 

  17. Kotsiantis, S., Pintelas, P.: Combining bagging and boosting. Int. J. Comput. Intell. 1(4), 324–333 (2004)

    MATH  Google Scholar 

  18. Pontes, B., Girldez, R., Aguilar-Ruiz, J.S.: Biclustering on expression data: a review. J. Biomed. Inform. 57, 163–180 (2015)

    Article  Google Scholar 

  19. Cheng, Y., Church, G.M.: Biclustering of expression data. Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, vol. 8, pp. 93–103 (2000)

    Google Scholar 

  20. Lazzeroni, L., Owen, A., et al.: Plaid models for gene expression data. Statistica Sinica 12(1), 61–86 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Murali, T., Kasif, S.: Extracting conserved gene expression motifs from gene expression data. In: Proceedings of Pacific Symposium on Biocomputing, vol. 3, pp. 77–88 (2003)

    Google Scholar 

  22. Prelić, A., Bleuler, S., Zimmermann, P., Wille, A., Bühlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)

    Article  Google Scholar 

  23. Bozdağ, D., Parvin, J.D., Catalyurek, U.V.: A biclustering method to discover co-regulated genes using diverse gene expression datasets. In: Rajasekaran, S. (ed.) BICoB 2009. LNCS, vol. 5462, pp. 151–163. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  24. Li, G., Ma, Q., Tang, H., Paterson, A.H., Xu, Y.: QUBIC: a qualitative biclustering algorithm for analyses of gene expression data. Nucleic Acids Res. 37(15), e101–e101 (2009)

    Article  Google Scholar 

  25. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans. Comput. Biol. Bioinf. 1(1), 24–45 (2004)

    Article  Google Scholar 

  26. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  27. Ghosh, J., Acharya, A.: Cluster ensembles. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 1(4), 305–315 (2011)

    Article  Google Scholar 

  28. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  29. Parvin, H., Minaei-Bidgoli, B., Alinejad-Rokny, H., Punch, W.F.: Data weighing mechanisms for clustering ensembles. Comput. Electr. Eng. 39(5), 1433–1450 (2013)

    Article  Google Scholar 

  30. Lancichinetti, A., Fortunato, S.: Consensus clustering in complex networks. Scientific reports 2 (2012)

    Google Scholar 

  31. Horzyk, A.: Information freedom and associative artificial intelligence. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2012, Part I. LNCS, vol. 7267, pp. 81–89. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  32. Horzyk, A.: How does human-like knowledge come into being in artificial associative systems? In: Proceedings of the 8-th International Conference on Knowledge, Information and Creativity Support Systems, Krakow, Poland (2013)

    Google Scholar 

  33. McCall, M.N., Almudevar, A.: Affymetrix GeneChip microarray preprocessing for multivariate analyses. Brief. Bioinf. 13(5), 536–546 (2012)

    Article  Google Scholar 

  34. Davis, S., Meltzer, P.: GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 14, 1846–1847 (2007)

    Article  Google Scholar 

  35. Gautier, L., Cope, L., Bolstad, B.M., Irizarry, R.A.: Affy–analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20(3), 307–315 (2004)

    Article  Google Scholar 

  36. Gentleman, R., Carey, V., Huber, W., Hahne, F.: Genefilter: methods for filtering genes from microarray experiments. R package version 1(0) R package version 1.42.0. (2011)

    Google Scholar 

  37. Falcon, S., Gentleman, R.: Using GOstats to test gene lists for GO term association. Bioinformatics 23(2), 257–8 (2007)

    Article  Google Scholar 

  38. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. Series B (Methodol.) 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  39. Orzechowski, P., Boryczko, K.: Effective biclustering on gpu-capabilities and constraints. Przeglad Elektrotechniczny 1, 133–6 (2015)

    Article  Google Scholar 

  40. Hanczar, B., Nadif, M.: Study of consensus functions in the context of ensemble methods for biclustering (2013). http://cap2013.sciencesconf.org/21492/document

Download references

Acknowledgements

This research was funded by the Polish National Science Center (NCN), grant No. 2013/11/N/ST6/03204. This research was supported in part by PL-Grid Infrastructure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patryk Orzechowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Orzechowski, P., Boryczko, K. (2016). Hybrid Biclustering Algorithms for Data Mining. In: Squillero, G., Burelli, P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science(), vol 9597. Springer, Cham. https://doi.org/10.1007/978-3-319-31204-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31204-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31203-3

  • Online ISBN: 978-3-319-31204-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics