Abstract
Laughter is everywhere. So much so that we often do not even notice it. First, laughter has a strong connection with humour. Most of us seek out laughter and people who make us laugh, and it is what we do when we gather together as groups relaxing and having a good time. But laughter also plays an important role in making sure we interact with each other smoothly. It provides social bonding signals that allow our conversations to flow seamlessly between topics; to help us repair conversations that are breaking down; and to end our conversations on a positive note.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Laughter elements correspond to individual bursts of energy, whose succession is characteristic of laughter.
- 3.
- 4.
References
André E, Martin JC, Lingenfelser F, Wagner J (2013) Multimodal fusion in human-agent dialogue. In: Rojc M, Campbell N (eds) Coverbal synchrony in human-machine interaction. CRC Press, Boca Raton
Bachorowski JA, Owren MJ (2001) Not all laughs are alike: voiced but not unvoiced laughter readily elicits positive affect. Psychol Sci 12(3):252–257
Bachorowski JA, Owren MJ (2003) Sounds of emotion. Ann N Y Acad Sci 1000:244–265
Bachorowski, J.A., Smoski, M.J., Owen, M.J.: The acoustic features of human laughter. J Acoust Soc Am 110(3, Pt1), 1581–1597 (2001)
Beller G (2009) Analysis and generative model for expressivity. Applied to speech and musical performance. PhD thesis, Université Paris VI Pierre et Marie Curie
Bollepalli B, Urbain J, Raitio T, Gustafson J, Cakmak H (2014) A comparative evaluation of vocoding techniques for hmm-based laughter synthesis. In: 2014 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 255–259. doi:10.1109/ICASSP.2014.6853597
Bonin F, Campbell N, Vogel C (2012) Laughter and topic changes: temporal distribution and information flow. In: CogInfoCom 2012–3rd IEEE international conference on cognitive info communications. Kosice, Slovakia, pp 53–58
Bryant GA, Aktipis CA (2014) The animal nature of spontaneous human laughter. Evol Hum Behav 35(4):327–335
Burkhardt F, Campbell N (2015) Emotional speech synthesis. In: Calvo R, D’Mello S, Gratch J, Kappas A (eds) The oxford handbook of affective computing. Oxford University Press, Oxford
Cagampan B, Ng H, Panuelos K, Uy K, Cu J, Suarez M (2013) An exploratory study on naturalistic laughter synthesis. In: Proceedings of the 4th international workshop on empathic computing (IWEC’13). Beijing, China
Cai R, Lu L, Zhang HJ, Cai LH (2003) Highlight sound effects detection in audio stream. In: Proceedings of the 2003 international conference on multimedia and expo, 2003. ICME ’03, vol 3, pp III-37–40. doi:10.1109/ICME.2003.1221242
Campbell N, Kashioka H, Ohara R (2005) No laughing matter. In: Proceeding of INTERESPEECH, pp 465–468. Lisbon, Portugal (2005)
Çakmak H, Urbain J, Dutoit T (2014) The AV-LASYN database: a synchronous corpus of audio and 3D facial marker data for audio-visual laughter synthesis. In: Proceedings of the 9th international conference on language resources and evaluation (LREC’14)
Çakmak H, Urbain J, Tilmanne J, Dutoit T (2014) Evaluation of HMM-based visual laughter synthesis. 2014 IEEE international conference on acoustics speech and signal processing (ICASSP). IEEE, Florence, pp 4578–4582
Çakmak H, Urbain J, Dutoit T (2015) Synchronization rules for HMM-based audio-visual laughter synthesis. In: 2015 IEEE international conference on acoustics speech and signal processing (ICASSP). IEEE, South Brisbane, pp 2304–2308
Cosker, D., Edge, J.: Laughing, crying, sneezing and yawning: automatic voice driven animation of non-speech articulations. In: Computer animation and social agents (CASA) (2009)
dAlessandro N, Tilmanne J, Astrinaki M, Hueber T, Dall R, Ravet T, Moinet A, Cakmak H, Babacan O, Barbulescu A, Parfait V, Huguenin V, Kalayc ES, Hu Q (2014) Reactive statistical mapping: towards the sketching of performative control with data. In: Rybarczyk Y, Cardoso T, Rosas J, Camarinha-Matos L (eds) Innovative and creative developments in multimodal interaction systems, IFIP advances in information and communication technology, vol 425, pp 20–49. Springer, Heidelberg (2014)
Davila Ross M, Owren MJ, Zimmermann E (2009) Reconstructing the evolution of laughter in great apes and humans. Current Biol 19(13):1106–1111
Davila Ross M, Allcock B, Thomas C, Bard KA (2011) Aping expressions? chimpanzees produce distinct laugh types when responding to laughter of others. Emotion 11(5):1013–1020
Devillers L, Vidrascu L (2007) Positive and negative emotional states behind the laughs in spontaneous spoken dialogs. In: Interdisciplinary workshop on the phonetics of laughter, p 37
DiLorenzo P, Zordan V, Sanders B (2008) Laughing out loud: control for modeling anatomically inspired laughter using audio. ACM Trans Graph
Ding Y (2014) Data-driven expressive animation model of speech and laughter for an embodied conversational agent. PhD thesis, Télécom ParisTech (2014)
Ding Y, Huang J, Fourati N, Artières T, Pelachaud C (2014) Upper body animation synthesis for a laughing character. In: Intelligent virtual agents. Springer, Heidelberg, pp 164–173
Ding Y, Prepin K, Huang J, Pelachaud C, Artières T (2014) Laughter animation synthesis. In: Proceedings of the 2014 international conference on Autonomous agents and multi-agent systems. International foundation for autonomous agents and multiagent systems, pp. 773–780
Douglas-Cowie E, Campbell N, Cowie R, Roach P (2003) Emotional speech: towards a new generation of databases. Speech Commun 40(1–2):33–60. doi:10.1016/S0167-6393(02)00070-5. http://www.sciencedirect.com/science/article/pii/S0167639302000705
Douglas-Cowie E, Cowie R, Sneddon I, Cox C, Lowry O, McRorie M, Martin JC, Devillers L, Abrilian S, Batliner A, Amir N, Karpouzis K (2007) The humaine database: addressing the collection and annotation of naturalistic and induced emotional data. In: Paiva A, Prada R, Picard R (eds) Affective computing and intelligent interaction, Lecture notes in computer science, vol 4738. Springer, Heidelberg, pp 488–500
Dunbar R (2008) Mind the gap: or why humans are not just great apes. In: Proceedings of the British academy, vol 154. Joint British academy/British psychological society annual lecture
Ekman P (2003) Sixteen enjoyable emotions. Emotion Res 18(2):6–7
Ekman P, Friesen WV, Hager JC (2002) Facial action coding system: a technique for the measurement of facial movement
El Haddad K, Çakmak H, Dupont S, Dutoit T (2015) Towards a speech synthesis system with controllable amusement levels. In: Proceedings of 4th interdisciplinary workshop on laughter and other non-verbal vocalisations in speech. Enschede, The Netherlands
El Haddad K, Dupont S, d’Alessandro N, Dutoit T (2015) An HMM-based speech-smile synthesis system: an approach for amusement synthesis. In: Proceedings of 3rd international workshop on emotion representation, analysis and synthesis in continuous time and space (EmoSPACE15). Ljubljana, Slovenia
El Haddad K, Dupont S, Urbain J, Dutoit T (2015) Speech-laughs: an HMM-based approach for amused speech synthesis. In: International conference on acoustics, speech and signal processing (ICASSP 2015)
El Haddad K, Moinet A, Çakmak H, Dupont S, Dutoit T (2015) Using mage for real time speech-laugh synthesis. In: Proceedings of 4th interdisciplinary workshop on laughter and other non-verbal vocalisations in speech. Enschede, The Netherlands
Fredrickson B (2004) The broaden-and-build theory of positive emotions. Philos Trans R Soc B Biol Sci 359:1367–1378
Fukushima S, Hashimoto Y, Nozawa T, Kajimoto H (2010) Laugh enhancer using laugh track synchronized with the user’s laugh motion. In: CHI ’10 extended abstracts on human factors in computing systems, CHI EA ’10, pp 3613–3618. ACM, New York. doi:10.1145/1753846.1754027
Glenn PJ (2003) Laughter in interaction. The discourse function of laughter in writing tutorials. Cambridge University Press, Cambridge
Grammer K (1990) Strangers meet: Laughter and nonverbal signs of interest in opposite-sex encounters. J Nonverbal Behav 14(4):209–236. doi:10.1007/BF00989317
Greengross G, Miller GF (2011) Humor ability reveals intelligence, predicts mating success, and is higher in males. Intelligence 39(4):188–192
Griffin H, Aung M, Romera-Paredes B, McLoughlin C, McKeown G, Curran W, Bianchi-Berthouze N (2013) Laughter type recognition from whole body motion. In: 2013 Humaine association conference on affective computing and intelligent interaction (ACII), pp 349–355. doi:10.1109/ACII.2013.64
Griffin H, Aung M, Romera-Paredes B, McLoughlin C, McKeown G, Curran W, Berthouze N (2015) Perception and automatic recognition of laughter from whole-body motion: continuous and categorical perspectives. IEEE transactions on affective computing, PP(99). doi:10.1109/TAFFC.2015.2390627
Hatfield E, Cacioppo JT, Rapson RL (1994) Emotional contagion. Cambridge University Press, New York
Hofmann J (2014) Intense or malicious? the decoding of eyebrow-lowering frowning in laughter animations depends on the presentation mode. Front Psychol 5:1306
Hofmann J (2014) Smiling and laughter in positive emotions: personality influences and expressive features. PhD thesis, University of Zurich
Hofmann J, Platt T, Ruch W, Proyer RT (2015) Individual differences in gelotophobia predict responses to joy and contempt. Sage Open 5(2):1–12
Hofmann J, Platt T, Ruch W, More than amusement: Laughter and smiling in positive emotions (under review)
Hofmann J, Platt T, Ruch W, Niewiadomski R, Urbain J (2015) The influence of a virtual companion on amusement when watching funny films. Motiv Emot 39(3): 434–447
Hofmann J, Ruch W (2016) Schadenfreude laughter. Semiotika (Special Issue on Laughter)
Hofmann J, Stoffel F, Weber A, Platt T (2011) The 16 enjoyable emotions induction task (16-EEIT)—unpublished research instrument, Technical report, University of Zurich, Switzerland
Hofmann J, Ruch W, Platt T (2012) The en-and decoding of schadenfreude laughter. sheer joy expressed by a duchenne laugh or emotional blend with a distinct morphological expression? In: Interdisciplinary workshop on laughter and other non-verbal vocalisations in speech proceedings, pp 26–27
Holt E (2010) The last laugh: shared laughter and topic termination. J Pragmat 42(6):1513–1525
Hudenko WJ, Magenheimer MA (2011) Listeners prefer the laughs of children with autism to those of typically developing children. Autism 16(6):641–655. doi:10.1177/1362361311402856
Ito A, Wang X, Suzuki M, Makino S (2005) Smile and laughter recognition using speech processing and face recognition from conversation video. In: Proceedings of the 2005 international conference on cyberworlds, CW ’05, pp 437–444. IEEE Computer Society, Washington. doi:10.1109/CW.2005.82
Janin A, Baron D, Edwards J, Ellis D, Gelbart D, Morgan N, Peskin B, Pfau T, Shriberg E, Stolcke A, Wooters C (2003) The ICSI meeting corpus. In: 2003 IEEE international conference on acoustics, speech, and signal processing, 2003. proceedings. (ICASSP ’03), vol 1, pp I-364-I-367. doi:10.1109/ICASSP.2003.1198793
Kayyal M, Widen S, Russell J (2015) Context is more powerful than we think: contextual cues override facial cues even for valence. Emotion 15(3):287–291
Kennedy L, Ellis D (2004) Laughter detection in meetings. In: NIST ICASSP 2004 meeting recognition workshop. Montreal, Canada, pp 118–121
Kipper S, Todt D (2001) Variation of sound parameters affects the evaluation of human laughter. Behaviour 138(9):1161–1178
Kipper S, Todt D (2003) Dynamic-acoustic variation causes differences in evaluations of laughter. Percept Motor Skills 96(3):799–809
Kipper S, Todt D (2003) The role of rhythm and pitch in the evaluation of human laughter. J Nonverbal Behav 27(4):255–272
Klein E, Geist M, Piot B, Pietquin O (2012) Inverse reinforcement learning through structured classification. In: Bartlett P, Pereira FCN, Burges CJC, Bottou L. Weinberger KQ (eds.) Advances in neural information processing systems 25, pp 1016–1024. URL http://books.nips.cc/papers/files/nips25/NIPS2012_0491.pdf
Klein E, Piot B, Geist M, Pietquin O (2013) A cascaded supervised learning approach to inverse reinforcement learning. In: Blockeel H, Kersting K, Nijssen S, Zelezny F (eds) Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECML/PKDD 2013), Lecture notes in computer science, vol 8188, pp 1–16. Springer, Prague (Czech Republic) (2013). URL http://www.ecmlpkdd2013.org/wp-content/uploads/2013/07/327.pdf
Knox MT, Mirghafori N (2007) Automatic laughter detection using neural networks. In: INTERSPEECH 2007, 8th annual conference of the international speech communication association, ISCA. Antwerp, Belgium, August 27–31, 2007, pp 2973–2976
Kori S (1989) Perceptual dimensions of laughter and their acoustic correlates. Proc Int Conf Phon Sci Tallinn 4:255–258
Lasarcyk E, Trouvain J (2007) Imitating conversational laughter with an articulatory speech synthesis. In: Proceedings of the interdisciplinary workshop on the phonetics of laughter. Saarbrücken, Germany, pp 43–48
Lingenfelser F, Wagner J, André E, McKeown G, Curran W (2014) An event driven fusion approach for enjoyment recognition in real-time. In: Proceedings of the ACM international conference on multimedia, MM ’14. ACM, New York, pp 377–386. doi:10.1145/2647868.2654924
Lockerd A, Mueller FM (2002) Lafcam: leveraging affective feedback camcorder. In: CHI ’02 Extended abstracts on human factors in computing systems, CHI EA ’02. ACM, New York, pp 574–575. doi:10.1145/506443.506490
Mancini M, Varni G, Glowinski D, Volpe G (2012) Computing and evaluating the body laughter index. In: Salah A, Ruiz-del Solar J, Merili E, Oudeyer PY (eds) Human behavior understanding, Lecture notes in computer science, vol 7559. Springer, Heidelberg, pp 90–98
Mancini M, Hofmann J, Platt T, Volpe G, Varni G, Glowinski D, Ruch W, Camurri A (2013) Towards automated full body detection of laughter driven by human expert annotation. In: 2013 Humaine association conference on affective computing and intelligent interaction (ACII). IEEE, New Jersey, pp 757–762
Mancini M, Ach L, Bantegnie E, Baur T, Berthouze N, Datta D, Ding Y, Dupont S, Griffin H, Lingenfelser F, Niewiadomski R, Pelachaud C, Pietquin O, Piot B, Urbain J, Volpe G, Wagner J (2014) Laugh when you’re winning. In: Rybarczyk Y, Cardoso T, Rosas J, Camarinha-Matos L (eds) Innovative and creative developments in multimodal interaction systems, IFIP Advances in information and communication technology, vol 425. Springer, Heidelberg, pp 50–79
Mancini M, Varni G, Niewiadomski R, Volpe G, Camurri A (2014) How is your laugh today? In: Proceedings of the extended abstracts of the 32nd annual ACM conference on human factors in computing systems, CHI EA ’14. ACM, New York, pp. 1855–1860. doi:10.1145/2559206.2581205
Matsusaka T (2004) When does play panting occur during social play in wild chimpanzees? Primates J Primatol 45(4):221–229
McKeown G, Cowie R, Curran W, Ruch W, Douglas-Cowie E (2012) Ilhaire laughter database. In: Proceedings of the LREC workshop on corpora for research on emotion sentiment and social signals (ES 2012). European language resources association (ELRA), Istanbul
McKeown G, Curran W, Kane D, Mccahon R, Griffin HJ, McLoughlin C, Bianchi-Berthouze N (2013) Human perception of laughter from context-free whole body motion dynamic stimuli. In: 2013 Humaine association conference on affective computing and intelligent interaction, pp 306–311. doi:http://doi.ieeecomputersociety.org/10.1109/ACII.2013.57
McKeown G, Curran W, McLoughlin C, Griffin H, Bianchi-Berthouze N (2013) Laughter induction techniques suitable for generating motion capture data of laughter associated body movements. In: Proceedings of the 2nd international workshop on emotion representation, analysis and synthesis in continuous time and space (EmoSPACE) In conjunction with the IEEE FG. Shanghai, China
McKeown G, Sneddon I, Curran W (2015) Gender differences in the perceptions of genuine and simulated laughter and amused facial expressions. Emot Rev 7(1):30–38
McKeown G, Sneddon I, Curran W (2015) The underdetermined nature of laughter. In preparation
McKeown GJ (2013) The analogical peacock hypothesis: the sexual selection of mind-reading and relational cognition in human communication. Rev Gen Psychol 17(3):267–287
McKeown G, Valstar M, Cowie R, Pantic M, Schroder M (2012) The semaine database: annotated multimodal records of emotionally colored conversations between a person and a limited agent. IEEE Trans Affect Comput 3(1):5–17. doi:10.1109/T-AFFC.2011.20
Melder WA, Truong KP, Uyl MD, Van Leeuwen DA, Neerincx MA, Loos LR, Plum BS (2007) Affective multimodal mirror: Sensing and eliciting laughter. In: Proceedings of the international workshop on human-centered multimedia, HCM ’07. ACM, New York, pp. 31–40. doi:10.1145/1290128.1290134
Miller GF (2001) The mating mind. Vintage, London
Niewiadomski R, Pelachaud C (2012) Towards multimodal expression of laughter. In: Intelligent virtual agents. Springer, New York, pp 231–244
Niewiadomski R, Pelachaud C (2015) The effect of wrinkles, presentation mode, and intensity on the perception of facial actions and full-face expressions of laughter. ACM Trans Appl Percept (TAP) 12(1):2
Niewiadomski R, Urbain J, Pelachaud C, Dutoit T (2012) Finding out the audio and visual features that influence the perception of laughter intensity and differ in inhalation and exhalation phases. In: proceedings of the 4th International workshop on Corpora for research on emotion, sentiment and social signals, satellite of LREC 2012, Istanbul, Turkey
Niewiadomski R, Obaid M, Bevacqua E, Looser J, Anh LQ, Pelachaud C (2011) Cross-media agent platform. In: Proceedings of the 16th international conference on 3D web technology. ACM, New York, pp 11–19
Niewiadomski R, Pammi S, Sharma A, Hofmann J, Platt T, Cruz R, Qu B (2012) Visual laughter synthesis: initial approaches. In: Interdisciplinary workshop on laughter and other non-verbal vocalisations in speech, Dublin, Ireland
Niewiadomski R, Hofmann J, Urbain J, Platt T, Wagner J, Piot B, Çakmak H, Pammi S, Baur T, Dupont S, Geist M, Lingenfelser F, McKeown G, Pietquin O, Ruch W (2013) Laugh-aware virtual agent and its impact on user amusement. In: Proceedings of the international conference on autonomous agents and multi-agent systems, AAMAS (2013)
Niewiadomski R, Mancini M, Baur T, Varni G, Griffin H, Aung MSH (2013) MMLI: multimodal multiperson corpus of laughter in interaction. In: Salah AA, Hung H, Aran O, Gunes H (eds) HBU, Lecture notes in computer science, vol 8212. Springer, Hiedelberg, pp 184–195
Niewiadomski R, Mancini M, Ding Y, Pelachaud C, Volpe G (2014) Rhythmic body movements of laughter. In: Proceedings of the 16th international conference on multimodal interaction. ACM, New York, pp 299–306
O’Donnell Trujillo N, Adams K (1983) Heheh in conversation: some coordinating accomplishments of laughter. West J Commun (Includes communication reports) 47(2):175–191
Oh J, Wang G (2013) Laughter modulation: from speech to speech-laugh. In: Proceedings of the 14th annual conference of the international speech communication association (Interspeech). Lyon, France, pp 754–755
Oh J, Wang G (2013) Lolol: laugh out loud on laptop. In: Proceedings of the 2013 international conference on new musical instruments (NIME’13). Daejon, Korea
Owren M, Bachorowski JA (2003) Reconsidering the evolution of nonlinguistic communication: the case of laughter. J Nonverbal Behav 27(3):183–200
Pammi S, Khemiri H, Chollet G (2012) Laughter detection using alisp-based N-gram models. In: Proceeding of the interdisciplinary workshop on laughter and other non-verbal vocalisations. Dublin, Ireland, pp 16–17
Pecune F, Biancardi B, Ding Y, Pelachaud C, Mancini M, Varni G, Camurri A, Volpe G (2015) Lol-laugh out loud. In: Proceedings of AAAI 2015
Pelachaud C (2014) Interacting with socio-emotional agents. Procedia Comput Sci 39:4–7
Petridis S, Pantic M (2008) Fusion of audio and visual cues for laughter detection. In: International conference on content-based image and video retrieval, CIVR 2008. ACM, New York, pp 329–337. URL http://doc.utwente.nl/62669/
Petridis S, Pantic M (2011) Audiovisual discrimination between speech and laughter: why and when visual information might help. IEEE Trans Multimed 13(2):216–234. doi:10.1109/TMM.2010.2101586
Petridis S, Martinez B, Pantic M (2013) The mahnob laughter database. Image Vis Comput 31(2):186–202. doi:10.1016/j.imavis.2012.08.014
Piot B, Pietquin O, Geist M (2014) Predicting when to laugh with structured classification. In: Annual conference of the international speech communication association (Interspeech)
Platt T, Hofmann J, Ruch W, Niewiadomski R, Urbain J (2012) Experimental standards in research on AI and humor when considering psychology. In: Proceedings of fall symposium on artificial intelligence of humor
Platt T, Hofmann J, Ruch W, Proyer RT (2013) Duchenne display responses towards sixteen enjoyable emotions: individual differences between no and fear of being laughed at. Motiv Emot 37(4):776–786
Preuschoft S, van Hooff JARAM (1997) The social function of “smile” and “laughter”: variations across primate species and societies. Lawrence erlbaum associates, Mahweh, New Jersey, pp 171–189
Qu B, Pammi S, Niewiadomski R, Chollet G (2012) Estimation of faps and intensities of aus based on real-time face tracking. In: Proceedings of the 3rd symposium on facial analysis and animation, FAA ’12. ACM, New York, pp 13:1–13:1. doi:10.1145/2491599.2491612
Reuderink B (2007) Fusion for audio-visual laughter detection (2007). URL http://essay.utwente.nl/714/
Riek L, Rabinowitch T, Chakrabarti B, Robinson, P (2009) Empathizing with robots: fellow feeling along the anthropomorphic spectrum. In: 3rd International conference on affective computing and intelligent interaction and workshops 2009. ACII 2009, pp 1–6. doi:10.1109/ACII.2009.5349423
Rienks R (2007) Meetings in smart environments. implications of progressing technology. PhD thesis, University of Twente. ISBN: 978-90-365-2533-6, Number of pages: 201
Rothbart MK (1973) Laughter in young children. Psychol Bull 80(3):247–256
Ruch W (1993) The handbook of emotions, chapter Exhilaration and humor, pp 605–616. Guilford Press, New York
Ruch W (2012) Towards a new structural model of the sense of humor: preliminary findings. In: Proceedings of fall symposium on artificial intelligence of humor
Ruch W, Ekman P (2001) Emotion, qualia and consciousness, chapter The expressive pattern of laughter. World Scientic Publishers, Tokyo, pp 426–443
Ruch W, Hofmann J (2012) A temperament approach to humor. Humor and health promotion, pp 79–113
Ruch W, Hofmann J, Platt T (2013) Investigating facial features of four types of laughter in historic illustrations. Eur J Humour Res 1(1):99–118
Ruch W, Hofmann J, Platt T, Proyer R (2013) The state-of-the art in gelotophobia research: a review and some theoretical extensions. Humor Int J Humor Res 27(1):23–45
Ruch WF, Platt T, Hofmann J, Niewiadomski R, Urbain J, Mancini M, Dupont S (2014) Gelotophobia and the challenges of implementing laughter into virtual agents interactions. Front Human Neurosci 8:928
Ruch W, Hofmann J, Platt T (2015) Individual differences in gelotophobia and responses to laughter-eliciting emotions. Personal Individ Differ 72:117–121
Sathya AT, Sudheer K, Yegnanarayana B (2013) Synthesis of laughter by modifying excitation characteristics. J Acous Soc Am 133:3072–3082
Schuller B, Steidl S, Batliner A, Vinciarelli A, Scherer KR, Ringeval F, Chetouani M, Weninger F, Eyben F, Marchi E, Mortillaro M, Salamin H, Polychroniou A, Valente F, Kim S (2013) The interspeech 2013 computational paralinguistics challenge: social signals, conflict, emotion, autism. In: Interspeech. ISCA, pp 148–152
Sestito M, Umiltà MA, De Paola G, Fortunati R, Raballo A, Leuci E, Maffei S, Tonna M, Amore M, Maggini C et al (2013) Facial reactions in response to dynamic emotional stimuli in different modalities in patients suffering from schizophrenia: a behavioral and emg study. Front Human Neurosci 7:368
Shahid S, Krahmer E, Swerts M, Melder W, Neerincx M (2009) You make me happy: using an adaptive affective interface to investigate the effect of social presence on positive emotion induction. In: 3rd International conference on affective computing and intelligent interaction and workshops 2009. ACII 2009, pp 1–6. doi:10.1109/ACII.2009.5349355
Sneddon I, McRorie M, McKeown G, Hanratty J (2012) The belfast induced natural emotion database. IEEE Trans Affect Comput 3(1):32–41. doi:10.1109/T-AFFC.2011.26
Sundaram S, Narayanan S (2007) Automatic acoustic synthesis of human-like laughter. J Acous Soc Am 121(1):527–535
Szameitat DP, Darwin CJ, Wildgruber D, Alter K, Szameitat AJ (2011) Acoustic correlates of emotional dimensions in laughter: arousal, dominance, and valence. Cognit Emot 25(4):599–611
Tanaka H, Campbell N (2014) Classification of social laughter in natural conversational speech. Comput Speech Lang 28(1):314–325
Tokuda K, Yoshimura T, Masuko T, Kobayashi T, Kitamura T (2000) Speech parameter generation algorithms for hmm-based speech synthesis. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP), vol 3. IEEE, New York, pp 1315–1318
Truong KP, van Leeuwen DA (2007) Automatic discrimination between laughter and speech. Speech Commun 49(2):144–158. doi:10.1016/j.specom.2007.01.001, http://www.sciencedirect.com/science/article/pii/S0167639307000027
Urbain J (2014) Acoustic laughter processing. PhD thesis, University of Mons
Urbain J, Dutoit T (2012) Measuring instantaneous laughter intensity from acoustic features. In: Proceeding of the interdisciplinary workshop on laughter and other non-verbal vocalisations. Dublin, Ireland, pp 18–19
Urbain J, Niewiadomski R, Bevacqua E, Dutoit T, Moinet A, Pelachaud C, Picart B, Tilmanne J, Wagner J (2010) Avlaughtercycle. J Multimodal User Interfaces 4(1):47–58. doi:10.1007/s12193-010-0053-1
Urbain J, Cakmak H, Dutoit T (2012) Development of HMM-based acoustic laughter synthesis. In: Interdisciplinary workshop on laughter and other non-verbal vocalisations in speech, Dublin, Ireland, pp 26–27
Urbain J, Niewiadomski R, Hofmann J, Bantegnie E, Baur T, Berthouze N, Cakmak H, Cruz R, Dupont S, Geist M, Griffin H, Lingenfelser F, Mancini M, Miranda M, McKeown G, Pammi S, Pietquin O, Piot B, Platt T, Ruch W, adn Volpe G, Wagner J (2012) Laugh machine. In: Proceedings of Enterface12. The 8th international summer workshop on multimodal interfaces
Urbain J, Çakmak H, Dutoit T (2013) Automatic phonetic transcription of laughter and its application to laughter synthesis. In: Proceedings of the 5th biannual humaine association conference on affective computing and intellignet interaction (ACII). Geneva, Switzerland, pp 153–158
Urbain J, Çakmak H, Dutoit T (2013) Evaluation of HMM-based laughter synthesis. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP), Vancouver, Canada, pp 7835–7839
Urbain J, Niewiadomski R, Mancini M, Griffin H, Çakmak H, Ach L, Volpe G (2013) Multimodal analysis of laughter for an interactive system. In: Proceedings of the INTETAIN 2013
Vinciarelli A, Pantic M, Heylen D, Pelachaud C, Poggi I, D’Errico F, Schroeder M (2012) Bridging the gap between social animal and unsocial machine: a survey of social signal processing. IEEE Trans Affect Comput 3(1):69–87. doi:10.1109/T-AFFC.2011.27
Urbain J, Çakmak H, Charlier A, Denti M, Dutoit T, Dupont S (2014) Arousal-driven synthesis of laughter. IEEE J Select Top Signal Process 8:273–284. doi:10.1109/JSTSP.2014.2309435
Wagner J, Lingenfelser F, André E (2013) Using phonetic patterns for detecting social cues in natural conversations. In: Bimbot F, Cerisara C, Fougeron C, Gravier G, Lamel L, Pellegrino F, Perrier P (eds) INTERSPEECH 2013, 14th Annual conference of the international speech communication association, Lyon, France, August 25–29. ISCA, pp 168–172
Wagner J, Lingenfelser F, Baur T, Damian I, Kistler F, André E (2013) The social signal interpretation (SSI) framework: multimodal signal processing and recognition in real-time. Proceedings of the 21st ACM international conference on multimedia, MM ’13. ACM, New York, pp 831–834
Yoshimura T, Tokuda K, Masuko T, Kobayashi T, Kitamura T (1999) Simultaneous modeling of spectrum, pitch and duration in HMM-based speech synthesis. In: Proceedings of Eurospeech. Budapest, Hungary
Acknowledgments
We would like to acknowledge all colleagues within the ILHAIRE project, from the following partner organisations: University of Mons (Belgium), Télécom ParisTech / Centre National de la Recherche Scientifique (France), University of Augsburg (Germany), Università degli Studi of Genova (Italy), University College London (United Kingdom), Queens̀ University ‘Belfast (United Kingdom), University of Zurich (Switzerland), Supélec (France), Cantoche (France), University of Lille (France). Our thanks go to Laurent Ach, Elisabeth André, Hane Aung, Emeline Bantegnie, Tobias Baur, Nadia Berthouze, Antonio Camurri, Gerard Chollet, Roddy Cowie, Will Curran, Yu Ding, Stéphane Dupont, Thierry Dutoit, Matthieu Geist, Harry Griffin, Jing Huang, Jennifer Hofmann, Florian Lingenfelser, Anh Tu Mai, Maurizio Mancini, Gary McKeown, Benoît Morel, Radoslaw Niewiadomski, Sathish Pammi, Catherine Pelachaud, Olivier Pietquin, Bilal Piot, Tracey Platt, Bingqing Qu, Johannes Wagner, Willibald Ruch, Abhisheck Sharma, Lesley Storey, Jérôme Urbain, Giovanna Varni, Gualtiero Volpe, and their colleagues and co-authors. They all contributed to the initial ideas, to the teambuilding, or to the scientific/research developments within the project. The research leading to these results has received funding from the EU Seventh Framework Programme (FP7/2007–2013) under grant nbr. 270780 (ILHAIRE project).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Dupont, S. et al. (2016). Laughter Research: A Review of the ILHAIRE Project. In: Esposito, A., Jain, L. (eds) Toward Robotic Socially Believable Behaving Systems - Volume I . Intelligent Systems Reference Library, vol 105. Springer, Cham. https://doi.org/10.1007/978-3-319-31056-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-31056-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-31055-8
Online ISBN: 978-3-319-31056-5
eBook Packages: EngineeringEngineering (R0)