Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evolving L-Systems with Musical Notes

  • Conference paper
  • First Online:
Evolutionary and Biologically Inspired Music, Sound, Art and Design (EvoMUSART 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9596))

Abstract

Over the years researchers have been interested in devising computational approaches for music and image generation. Some of the approaches rely on generative rewriting systems like L-systems. More recently, some authors questioned the interplay of music and images, that is, how we can use one type to drive the other. In this paper we present a new method for the algorithmic generations of images that are the result of a visual interpretation of an L-system. The main novelty of our approach is based on the fact that the L-system itself is the result of an evolutionary process guided by musical elements. Musical notes are decomposed into elements – pitch, duration and volume in the current implementation – and each of them is mapped into corresponding parameters of the L-system – currently line length, width, color and turning angle. We describe the architecture of our system, based on a multi-agent simulation environment, and show the results of some experiments that provide support to our approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is possible to catch some note that has been previously caught.

  2. 2.

    Each note parameters were interpreted as a MIDI note: (i) pitch range: 0 – 127 (ii) volume range: 20 – 102 (iii) duration range 200 – 4000 ms (iv) timbre – piano (0).

References

  1. Lourenço, B.F., Ralha, J.C., Brandao, M.C.: L-systems, scores, and evolutionary techniques. In: Proceedings of the SMC 2009–6th Sound and Music Computing Conference, pp. 113–118 (2009)

    Google Scholar 

  2. McCormack, J.: Aesthetic evolution of L-systems revisited. In: Raidl, G.R., Cagnoni, S., Branke, J., Corne, D.W., Drechsler, R., Jin, Y., Johnson, C.G., Machado, P., Marchiori, E., Rothlauf, F., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2004. LNCS, vol. 3005, pp. 477–488. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Moroni, A., Manzolli, J., Von Zuben, F., Gudwin, R.: Vox populi: an interactive evolutionary system for algorithmic music composition. Leonardo Music J. 10, 49–54 (2000)

    Article  Google Scholar 

  4. Měch, R., Prusinkiewicz, P.: Visual models of plants interacting with their environment. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH 1996, PP. 397–410. ACM, New York (1996)

    Google Scholar 

  5. Pestana, P.: Lindenmayer systems and the harmony of fractals. Chaotic Model. Simul. 1(1), 91–99 (2012)

    MathSciNet  Google Scholar 

  6. Prusinkiewicz, P., Lindenmayer, A.: The algorithmic beauty of plants. Springer, New York (1990)

    Google Scholar 

  7. Soddell, F., Soddell, J.: Microbes and music. In: Mizoguchi, R., Slaney, J.K. (eds.) PRICAI 2000. LNCS, vol. 1886. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Kaliakatsos-Papakostas, M.A., Floros, A., Vrahatis, M.N.: Intelligent generation of rhythmic sequences using finite l-systems. In: Eighth International Conference on Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp. 424–427. IEEE (2012)

    Google Scholar 

  9. Nelson, G.L.: Real time transformation of musical material with fractal algorithms. Comput. Math. Appl. 32(1), 109–116 (1996)

    Article  Google Scholar 

  10. Sims, K.: Interactive evolution of dynamical systems. In: Toward a practice of autonomous systems, Proceedings of the First European Conference on Artificial Life, pp. 171–178 (1992)

    Google Scholar 

  11. Prusinkiewicz, P.: Score Generation with L-Systems. MPublishing, University of Michigan Library, Ann Arbor (1986)

    Google Scholar 

  12. Eiben, A., Smith, J.E.: Introduction to Evolutionary Computation. Natural Computing Series, 2nd edn. Springer, Heidelberg (2015)

    Book  MATH  Google Scholar 

  13. van Dillen, O.: Consonance and dissonance (2014). http://www.oscarvandillen.com/outline_of_basic_music_theory/consonance_and_dissonance/. Accessed 01 November 2015

  14. Guéret, C., Monmarché, N., Slimane, M.: Ants can play music. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 310–317. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Manousakis, S.: Musical l-systems. Koninklijk Conservatorium. (master thesis), The Hague (2006)

    Google Scholar 

  16. Keller, R.M., Morrison, D.R.: A grammatical approach to automatic improvisation. In: Proceedings, Fourth Sound and Music Conference, Lefkada, Greece, July 2007, Mostof the soloists at Birdland had to wait for Parker’s next record in order to and out what to play next. What will they do now (2007)

    Google Scholar 

  17. Biles, J.: Genjam: A genetic algorithm for generating jazz solos. In: Proceedings of the International Computer Music Conference, International Computer Music Association, pp. 131–131 (1994)

    Google Scholar 

  18. Todd, P., Werner, G.: Frankensteinian methods for evolutionary music composition. In: Griffith, N., Todd, P.M. (eds.) Musical Networks: Parallel Distributed Perception and Performance, pp. 313–339. MIT Press/Bradford Books, Cambridge (1999)

    Google Scholar 

  19. Wiggins, G., Papadopoulos, G., Phon-Amnuaisuk, S., Tuson, A.: Evolutionary methods for musical composition. Dai Research Paper (1998)

    Google Scholar 

  20. Sims, K.: Artificial evolution for computer graphics. Comput. Graphics 25(4), 319–328 (1991)

    Article  MathSciNet  Google Scholar 

  21. Holland, J.H.: Genetic algorithms. Sci. Am. 267(1), 66–72 (1992)

    Article  Google Scholar 

  22. Shiffman, D.: Learning Processing: A Beginner’s Guide to Programming Images, Animation, and Interaction. Morgan Kaufmann, Amsterdam (2009)

    Google Scholar 

Download references

Acknowledgments

This research is partially funded by the project ConCreTe. Project ConCreTe acknowledges financial support of the Future and Emerging Technologies (FET) programme with the Seventh Framework Programme for Research of the European Commission, under FET grant number 611733.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Rodrigues, A., Costa, E., Cardoso, A., Machado, P., Cruz, T. (2016). Evolving L-Systems with Musical Notes. In: Johnson, C., Ciesielski, V., Correia, J., Machado, P. (eds) Evolutionary and Biologically Inspired Music, Sound, Art and Design. EvoMUSART 2016. Lecture Notes in Computer Science(), vol 9596. Springer, Cham. https://doi.org/10.1007/978-3-319-31008-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31008-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31007-7

  • Online ISBN: 978-3-319-31008-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics