Nothing Special   »   [go: up one dir, main page]

Skip to main content

Experimental Evaluation of Two Approaches to Optimal Recombination for Permutation Problems

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9595))

Included in the following conference series:

  • 782 Accesses

Abstract

We consider two approaches to formulation and solving of optimal recombination problems arising as supplementary problems in genetic algorithms for the Asymmetric Travelling Salesman Problem and the Makespan Minimization Problem on a Single Machine. All four optimal recombination problems under consideration are NP-hard but relatively fast exponential-time algorithms are known for solving them. The experimental evaluation carried out in this paper shows that the two approaches to optimal recombination are competitive with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Buriol, L.S., Franca, P.M., Moscato, P.: A new memetic algorithm for the asymmetric traveling salesman problem. J. Heuristics 10, 483–506 (2004)

    Article  MATH  Google Scholar 

  2. Chvatal, V.: Probabilistic methods in graph theory. Ann. Oper. Res. 1, 171–182 (1984)

    Article  MATH  Google Scholar 

  3. Cirasella, J., Johnson, D.S., McGeoch, L.A., Zhang, W.: The asymmetric traveling salesman problem: algorithms, instance generators, and tests. In: Buchsbaum, A.L., Snoeyink, J. (eds.) ALENEX 2001. LNCS, vol. 2153, pp. 32–59. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS J. Comput. 15(2), 233–248 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  6. Cotta, C., Alba, E., Troya, J.M.: Utilizing dynastically optimal forma recombination in hybrid genetic algorithms. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 305–314. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Cotta, C., Troya, J.M.: Genetic forma recombination in permutation flowshop problems. Evol. Comput. 6(1), 25–44 (1998)

    Article  Google Scholar 

  8. Dantzig, G., Fulkerson, R., Johnson, S.: Solution of a large-scale traveling salesman problem. Oper. Res. 2, 393–410 (1954)

    MathSciNet  Google Scholar 

  9. Dongarra, J.J.: Performance of various computers using standard linear equations software. Technical Report No. CS-89-85, University of Manchester, 110 p. (2014)

    Google Scholar 

  10. Eppstein, D.: The traveling salesman problem for cubic graphs. J. Graph Algorithms Appl. 11(1) (2007)

    Google Scholar 

  11. Eremeev, A.V., Kovalenko, J.V.: Optimal recombination in genetic algorithms for combinatorial optimization problems: Part II. Yugoslav J. Oper. Res. 24(2), 165–186 (2014)

    Article  MathSciNet  Google Scholar 

  12. Fischetti, M., Toth, P.: An additive bounding procedure for the asymmetric travelling salesman problem. Math. Program. A 53, 173–197 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fischetti, M., Toth, P.: A polyhedral approach to the asymmetric travelling salesman problem. Manage. Sci. 43, 1520–1536 (1997)

    Article  MATH  Google Scholar 

  14. Fischetti, M., Toth, P., Vigo, D.: A branch and bound algorithm for the capacitated vehicle routing problem on directed graphs. Oper. Res. 42, 846–859 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-completeness. W.H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  16. Goldberg, D., Thierens, D.: Elitist recombination: an integrated selection recombination GA. In: Proceedings of the First IEEE World Congress on Computational Intelligence. vol. 1, pp. 508–512. IEEE Service Center, Piscataway, New Jersey (1994)

    Google Scholar 

  17. Hazir, O., Günalay, Y., Erel, E.: Customer order scheduling problem: a comparative metaheuristics study. Int. Journ. Adv. Manuf. Technol. 37, 589–598 (2008)

    Article  Google Scholar 

  18. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  19. Mood, A.M., Graybill, F.A., Boes, D.C.: Introduction to the Theory of Statistics, 3rd edn. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  20. Nagata, Y., Soler, D.: A new genetic algorithm for the asymmetric travelling salesman problem. Expert Syst. Appl. 39(10), 8947–8953 (2012)

    Article  Google Scholar 

  21. Radcliffe, N.J.: The algebra of genetic algorithms. Ann. Math. Artif. Intell. 10(4), 339–384 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reinelt, G.: TSPLIB - a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  23. Serdyukov, A.I.: On travelling salesman problem with prohibitions. Upravlaemye systemi 1, 80–86 (1978). (in Russian)

    MathSciNet  MATH  Google Scholar 

  24. Tinós, R., Whitley, D., Ochoa, G.: Generalized asymmetric partition crossover (GAPX) for the asymmetric TSP. In: Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation, pp. 501–508. ACM, New York (2014)

    Google Scholar 

  25. Whitley, D., Starkweather, T., Shaner, D.: The traveling salesman and sequence scheduling: quality solutions using genetic edge recombination. In: Handbook of Genetic Algorithms, pp. 350–372. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  26. Yagiura, M., Ibaraki, T.: The use of dynamic programming in genetic algorithms for permutation problems. Eur. Jour. Oper. Res. 92, 387–401 (1996)

    Article  MATH  Google Scholar 

  27. Zhang, W.: Depth-first branch-and-bound versus local search: a case study. In: Proceedings of 17th National Conference on Artificial Intelligence, pp. 930–935. Austin, TX (2000)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Russian Science Foundation grant 15-11-10009, except for Subsect. 3.2 which is supported by RFBI grant 15-01-00785.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia V. Kovalenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Eremeev, A.V., Kovalenko, J.V. (2016). Experimental Evaluation of Two Approaches to Optimal Recombination for Permutation Problems. In: Chicano, F., Hu, B., García-Sánchez, P. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2016. Lecture Notes in Computer Science(), vol 9595. Springer, Cham. https://doi.org/10.1007/978-3-319-30698-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30698-8_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30697-1

  • Online ISBN: 978-3-319-30698-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics