Nothing Special   »   [go: up one dir, main page]

Skip to main content

Semi-supervised Clustering Based on Artificial Bee Colony Algorithm with Kernel Strategy

  • Conference paper
  • First Online:
Web-Age Information Management (WAIM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9659))

Included in the following conference series:

  • 1137 Accesses

Abstract

Artificial Bee Colony (ABC) algorithm, which simulates the intelligent foraging behavior of a honey bee swarm, is one of optimization algorithms introduced recently. The performance of the ABC algorithm has been proved to be very effective in many researches. In this paper, ABC algorithm combined with kernel strategy is proposed for clustering semi-supervised information. The proposed clustering strategy can make use of more background knowledge than traditional clustering methods and deal with non-square clusters with arbitrary shape. Several datasets including 2D display data and UCI datasets are used to test the performance of the proposed algorithm and the experiment results indicate that the constructed algorithm is effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., Wu, A.: An efficient k-means clustering algorithm: analysis and implementation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 881–892 (2002)

    Article  MATH  Google Scholar 

  2. Sander, J., Ester, M., Kriegel, H., Xu, X.: Density-based clustering in spatial databases: the algorithm GDBscan and its applications. Data Min. Knowl. Discov. 2(2), 169–194 (1998)

    Article  Google Scholar 

  3. Dhillon, I.S., Guan, Y., Kulis, B.: Kernel k-means: spectral clustering and normalized cuts. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, pp. 551–556 (2004)

    Google Scholar 

  4. Zhang, R., Rudnicky, A.: A large scale clustering scheme for kernel k-means. In: Proceedings of the 16th International Conference on Pattern Recognition, vol. 4. IEEE, pp. 289–292 (2002)

    Google Scholar 

  5. Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recogn. 33(9), 1455–1465 (2000)

    Article  Google Scholar 

  6. Van der Merwe, D., Engelbrecht, A.: Data clustering using particle swarm optimization. In: Proceedings of the 2003 Congress on Evolutionary Computation, vol. 1. IEEE, pp. 215–220 (2003)

    Google Scholar 

  7. Wagstaff, K., Cardie, C., Rogers, S., Schrödl, S.: Constrained k-means clustering with background knowledge. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 577–584 (2001)

    Google Scholar 

  8. Basu, S., Banerjee, A., Mooney, R.J.: Semi-supervised clustering by seeding. In: Proceedings of the Nineteenth International Conference on Machine Learning, ICML 2002, pp. 27–34 (2002)

    Google Scholar 

  9. Kumar, N., Kummamuru, K.: Semisupervised clustering with metric learning using relative comparisons. IEEE Trans. Knowl. Data Eng. 20(4), 496–503 (2008)

    Article  Google Scholar 

  10. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York (2003)

    MATH  Google Scholar 

  11. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Technnical report, TR06, Erciyes University, Erciyes (2005)

    Google Scholar 

  12. Karaboga, D., Basturk, B.: Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) IFSA 2007. LNCS (LNAI), vol. 4529, pp. 789–798. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Karaboga, D., Ozturk, C.: A novel clustering approach: Artificial bee colony (ABC) algorithm. Appl. Soft Comput. 11(1), 652–657 (2011)

    Article  Google Scholar 

  14. Szeto, W., Wu, Y., Ho, S.C.: An artificial bee colony algorithm for the capacitated vehicle routing problem. Eur. J. Oper. Res. 215(1), 126–135 (2011)

    Article  Google Scholar 

  15. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 31(1–4), 61–85 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 61473259, No. 61070074, No. 60703038), the Zhejiang Provincial Natural Science Foundation (No. Y14F020118), the National Science& Technology Support Program of China (2015BAK26B00, 2015BAK26B02) and the PEIYANG Young Scholars Program of Tianjin University (2016XRX-0001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Dai, J., Han, H., Hu, H., Hu, Q., Wei, B., Yan, Y. (2016). Semi-supervised Clustering Based on Artificial Bee Colony Algorithm with Kernel Strategy. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds) Web-Age Information Management. WAIM 2016. Lecture Notes in Computer Science(), vol 9659. Springer, Cham. https://doi.org/10.1007/978-3-319-39958-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39958-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39957-7

  • Online ISBN: 978-3-319-39958-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics