Abstract
Results diversification has been a key research issue on web search in the last couple of years. Some recent research work suggests that data fusion, especially linear combination of multiple results, is a good option of dealing with this problem. However, there are many different ways of setting weights. In this paper, we propose a differential evolution-based method to find optimal weights in the weight space for the linear combination method. Experimental results show that the proposed method is effective compared with the state-of-the-art techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
TREC (Text Retrieval Conference) is an annual information retrieval evaluation event held by the National Institute of Standards and Technology, USA. Its web site is located at http://trec.nist.gov/.
- 2.
Runs can be downloaded from TREC’s web site http://trec.nist.gov.
- 3.
- 4.
Its web site is located at http://research.nii.ac.jp/ntcir/ntcir-12/index.html.
References
Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying search results. In: Proceedings of WSDM 2009, Barcelona, Spain, pp. 5–14 (2009)
Aslam, J.A., Montague, M.: Models for metasearch. In: Proceedings of ACM SIGIR 2001, New Orleans, Louisiana, USA, pp. 276–284 (2001)
Bartell, B.T., Cottrell, G.W., Belew, R.K.: Automatic combination of multiple ranked retrieval systems. In: Proceedings of ACM SIGIR 1994, Dublin, Ireland, pp. 173–184 (1994)
Jaime, G., Goldstein, C.J.: The use of MMR, diversity-based reranking for reordering documents and producing summaries. In: Proceedings of ACM SIGIR 1998, Melbourne, Australia, pp. 335–336 (1998)
Chapelle, O., Metlzer, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for graded relevance. In: Proceedings of ACM CIKM 2009, Hong Kong, China, pp. 621–630 (2009)
Charles, L., Clarke, A., Craswell, N., Soboroff, I.: Overview of the TREC web track. In: Proceedings of the Eighteenth Text REtrieval Conference, TREC 2009, Gaithersburg, MD, USA (2009)
Clarke, C.L.A., Kolla, M., Cormack, G.V., Vechtomova, O., Ashkan, A., Büttcher, S., MacKinnon, I.: Novelty and diversity in information retrieval evaluation. In: Proceedings of ACM SIGIR 2008, Singapore, pp. 659–666 (2008)
Cormack, G.V., Clarke, C.L.A., Büttcher, S.: Reciprocal rank fusion outperforms Condorcet and individual rank learning methods. In: Proceedings of ACM SIGIR 2009, Boston, MA, USA, pp. 758–759 (2009)
Van Dang, W., Bruce Croft, W.: Diversity by proportionality: an election-based approach to search result diversification. In: Proceedings of ACM SIGIR 2012, Portland, OR, USA, pp. 65–74 (2012)
Das, S., Suganthan, P.N.: Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)
Fox, E.A., Shaw, J.A.: Combination of multiple searches. In: Proceedings of the Second Text REtrieval Conference, TREC 1993, Gaithersburg, MD, USA, pp. 243–252 (1993)
Ghosh, K., Parui, S.K., Majumder, P.: Learning combination weights in data fusion using genetic algorithms. Inf. Process. Manage. 51(3), 306–328 (2015)
Hong, D., Si, L.: Mixture model with multiple centralized retrieval algorithms for result merging in federated search. In: Proceedings of ACM SIGIR 2012, Portland, OR, USA, pp. 821–830 (2012)
Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of IJCAI 1995, Montréal, Québec, Canada, pp. 1137–1145 (1995)
Kozorovitzky, A.K., Kurland, O.: Cluster-based fusion of retrieved lists. In: Proceeding of ACM SIGIR 2011, Beijing, China, pp. 893–902 (2011)
Lee, J.H.: Analysis of multiple evidence combination. In: Proceedings of ACM SIGIR 2007, Philadelphia, PA, USA, pp. 267–275 (1997)
Liang, S., Ren, Z., de Rijke, M.: Fusion helps diversification. In: Proceeding of ACM SIGIR 2014, Gold Coast, QLD, Australia, pp. 303–312 (2014)
Montague, M., Aslam, J.A.: Condorcet fusion for improved retrieval. In: Proceedings of ACM CIKM Conference, McLean, VA, USA, pp. 538–548 (2002)
Price, K., Storn, R.M., Lampinen, J.A.: Differential Evolution-A Practical Approach to Global Optimization. Natural Computing. Springer, Heidelberg (2005)
Rodrygo, L., Santos, T., Macdonald, C., Ounis, I.: Exploiting query reformulations for web search result diversification. In: Proceedings of WWW, Raleigh, North Carolina, USA, pp. 881–890 (2010)
Sheldon, D., Shokouhi, M., Szummer, M., Craswell, N.: Lambdamerge: merging the results of query reformulations. In: Proceedings of WSDM, Hong Kong, China, pp. 795–804 (2011)
Vogt, C.C., Cottrell, G.W.: Fusion via a linear combination of scores. Inf. Retrieval 1(3), 151–173 (1999)
Wu, S., Bi, Y., Zeng, X.: The linear combination data fusion method in information retrieval. In: Hameurlain, A., Liddle, S.W., Schewe, K.-D., Zhou, X. (eds.) DEXA 2011, Part II. LNCS, vol. 6861, pp. 219–233. Springer, Heidelberg (2011)
Wu, S., Huang, C.: Search result diversification via data fusion. In: Proceedings of ACM SIGIR 2014, Gold Coast, QLD, Australia, pp. 827–830 (2014)
Wu, S., McClean, S.I.: Performance prediction of data fusion for information retrieval. Inf. Process. Manage. 42(4), 899–915 (2006)
Xia, L., Xu, J., Lan, Y., Guo, J., Cheng, X.: Learning maximal marginal relevance model via directly optimizing diversity evaluation measures. In: Proceedings of ACM SIGIR 2015, Santiago, Chile, pp. 113–122 (2015)
Yue, Y., Joachims, T.: Predicting diverse subsets using structural SVMs. In: Machine Learning, Proceedings of ICML, Helsinki, Finland, pp. 1224–1231 (2008)
Zhu, Y., Lan, Y., Guo, J., Cheng, X., Niu, S.: Learning for search result diversification. In: Proceedings of ACM SIGIR 2014, pp. 293–302 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Xu, C., Huang, C., Wu, S. (2016). Differential Evolution-Based Fusion for Results Diversification of Web Search. In: Cui, B., Zhang, N., Xu, J., Lian, X., Liu, D. (eds) Web-Age Information Management. WAIM 2016. Lecture Notes in Computer Science(), vol 9658. Springer, Cham. https://doi.org/10.1007/978-3-319-39937-9_33
Download citation
DOI: https://doi.org/10.1007/978-3-319-39937-9_33
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-39936-2
Online ISBN: 978-3-319-39937-9
eBook Packages: Computer ScienceComputer Science (R0)