Nothing Special   »   [go: up one dir, main page]

Skip to main content

Building Pedagogical Models by Formal Concept Analysis

  • Conference paper
  • First Online:
Intelligent Tutoring Systems (ITS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9684))

Included in the following conference series:

Abstract

The Pedagogical Model is one of the main components of an Intelligent Tutoring System. It is exploited to select a suitable action (e.g., feedback, hint) that the intelligent tutor provides to the learner in order to react to her interaction with the system. Such selection depends on the implemented pedagogical strategy and, typically, takes care of several aspects such as correctness and delay of the learner’s response, learner’s profile, context and so on. The main idea of this paper is to exploit Formal Concept Analysis to automatically learn pedagogical models from data representing human tutoring behaviours. The paper describes the proposed approach by applying it to an early case study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pslcdatashop.web.cmu.edu.

  2. 2.

    This App has been developed by one of the authors of this paper and presented in a paper accepted at the \(8^{th}\) International Conference on Computer Supported Education (CSEDU 2016).

References

  1. Chi, M., VanLehn, K., Litman, D.: Do micro-level tutorial decisions matter: applying reinforcement learning to induce pedagogical tutorial tactics. In: Aleven, V., Kay, J., Mostow, J. (eds.) ITS 2010, Part I. LNCS, vol. 6094, pp. 224–234. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  2. De Maio, C., Fenza, G., Loia, V., Senatore, S.: Hierarchical web resources retrieval by exploiting fuzzy formal concept analysis. Inf. Process. Manage. 48(3), 399–418 (2012)

    Article  Google Scholar 

  3. El-Sheikh, E., Sticklen, J.: A framework for developing intelligent tutoring systems incorporating reusability. In: Moonis, A., Mira, J., de Pobil, A.P. (eds.) IEA/AIE 1998. LNCS, vol. 1415, pp. 558–567. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer Science & Business Media, New York (2012)

    MATH  Google Scholar 

  5. Kuznetsov, S.O., Obiedkov, S.A.: Comparing performance of algorithms for generating concept lattices. J. Exp. Theor. Artif. Intell. 14(2–3), 189–216 (2002)

    Article  MATH  Google Scholar 

  6. Paiva, R.O.A., Bittencourt Santa Pinto, I.I., da Silva, A.P., Isotani, S., Jaques, P.: A systematic approach for providing personalized pedagogical recommendations based on educational data mining. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 362–367. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  7. Rivers, K., Koedinger, K.R.: Automating hint generation with solution space path construction. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K. (eds.) ITS 2014. LNCS, vol. 8474, pp. 329–339. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Sottilare, R.A.: Fundamentals of adaptive intelligent tutoring systems for self-regulated learning. Technical report, DTIC Document (2015)

    Google Scholar 

  9. Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., Lakhal, L.: Intelligent structuring and reducing of association rules with formal concept analysis. In: Baader, F., Brewka, G., Eiter, T. (eds.) KI 2001. LNCS (LNAI), vol. 2174, pp. 335–350. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Vanlehn, K.: The behavior of tutoring systems. Int. J. Artif. Intell. Educ. 16(3), 227–265 (2006)

    Google Scholar 

  11. Yevtushenko, S.A.: System of data analysis concept explorer. In: Proceedings of the 7th National Conference on Artificial Intelligence KII, vol. 2000 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Orciuoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Fenza, G., Orciuoli, F. (2016). Building Pedagogical Models by Formal Concept Analysis. In: Micarelli, A., Stamper, J., Panourgia, K. (eds) Intelligent Tutoring Systems. ITS 2016. Lecture Notes in Computer Science(), vol 9684. Springer, Cham. https://doi.org/10.1007/978-3-319-39583-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39583-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39582-1

  • Online ISBN: 978-3-319-39583-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics