Nothing Special   »   [go: up one dir, main page]

Skip to main content

Evaluation of Aggregated Systems in Smart Grids: An Example Use-Case for the Energy Option Model

  • Conference paper
  • First Online:
Highlights of Practical Applications of Scalable Multi-Agent Systems. The PAAMS Collection (PAAMS 2016)

Abstract

As a result of fast growing share of renewable energy production in the energy market the management of power and its distribution becomes more and more complex. The here presented Energy Option Model (EOM) seems to be a promising solution to handle this newly arisen complexity. This paper will present the EOM and analyze its capabilities in centralized evaluation of aggregated systems. The example use-case will be the charging process of a fleet of electric vehicles. While the results support the potential of the EOM to implement coordination strategies for aggregations of systems, they also show the general limitations of centralized control solutions for larger groups of systems in the context of smart grids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://math.nist.gov/scimark2/.

References

  1. Lehnhoff, S.: Dezentrales Vernetztes Energiemanagement: Ein Ansatz Auf Basis Eines Verteilten Adaptiven Realzeit-multiagentensystems. Vieweg + Teubner, Verlag (2010)

    Book  Google Scholar 

  2. Linnenberg, T., Wior, I., Schreiber, S., Fay, A.: A market-based multi-agent-system for decentralized power and grid control. In: 2011 IEEE 16th Conference on Emerging Technologies Factory Automation (ETFA), pp. 1–8 (2011)

    Google Scholar 

  3. Derksen, C., Linnenberg, T., Unland, R., Fay, A.: Structure and classification of unified energy agents as a base for the systematic development of future energy grids. Eng. Appl. Artif. Intell. 41, 310–324 (2015)

    Article  Google Scholar 

  4. Derksen, C., Linnenberg, T., Unland, R., Fay, A.: Unified energy agents as a base for the systematic development of future energy grids. In: Klusch, M., Thimm, M., Paprzycki, M. (eds.) MATES 2013. LNCS, vol. 8076, pp. 236–249. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Derksen, C., Unland, R.: Energy agents - foundation for open future energy grids. In: Position Papers of the 2015 Federated Conference on Computer Science and Information Systems, vol. 6, pp. 259–264 (2015)

    Google Scholar 

  6. Kok, K., Warmer, C., Kamphuis, R., Mellstrand, P., Gustavsson, R.: Distributed control in the electricity infrastructure. In: 2005 International Conference on Future Power Systems, pp. 1–7 (2005)

    Google Scholar 

  7. Platt, G.: The decentralised control of electricity networks - intelligent and self-healing systems. In: Grid Interop 2007 Forum Proceedings (2007)

    Google Scholar 

  8. Das, R., Thirugnanam, K., Kumar, P., Lavudiya, R., Singh, M.: Mathematical modeling for economic evaluation of electric vehicle to smart grid interaction. IEEE Trans. Smart Grid 5, 712–721 (2014)

    Article  Google Scholar 

  9. Gan, L., Topcu, U., Low, S.: Optimal decentralized protocol for electric vehicle charging. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 5798–5804 (2011)

    Google Scholar 

  10. Kelly, L., Rowe, A., Wild, P.: Analyzing the impacts of plug-in electric vehicles on distribution networks in British Columbia. In: 2009 IEEE Electrical Power Energy Conference (EPEC), pp. 1–6 (2009)

    Google Scholar 

  11. Lopes, J.A.P., Soares, F.J., Almeida, P.M.R.: Integration of electric vehicles in the electric power system. Proc. IEEE 99, 168–183 (2011)

    Article  Google Scholar 

  12. Luo, Y., Zhu, T., Wan, S., Zhang, S., Li, K.: Optimal charging scheduling for large-scale EV (electric vehicle) deployment based on the interaction of the smart-grid and intelligent-transport systems. Energy 97, 359–368 (2016)

    Article  Google Scholar 

  13. Roe, C., Farantatos, E., Meisel, J., Meliopoulos, A.P., Overbye, T.: Power system level impacts of PHEVs. In: 42nd Hawaii International Conference on System Sciences, 2009. HICSS 2009, pp. 1–10 (2009)

    Google Scholar 

  14. Valogianni, K., Ketter, W., Collins, J., Zhdanov, D.: Effective management of electric vehicle storage using smart charging. In: Proceedings of 28th AAAI Conference on Artificial Intelligence, pp. 472–478 (2014)

    Google Scholar 

  15. Kahlen, M., Ketter, W.: Aggregating electric cars to sustainable virtual power plants: the value of flexibility in future electricity markets. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15) (2015)

    Google Scholar 

  16. Kempton, W., Tomic, J.: Vehicle-to-grid power fundamentals: calculating capacity and net revenue. J. Power Sources 144, 268–279 (2005)

    Article  Google Scholar 

  17. Rahman, I., Vasant, P.M., Singh, B.S.M., Abdullah-Al-Wadud, M., Adnan, N.: Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renew. Sustain. Energy Rev. 58, 1039–1047 (2016)

    Article  Google Scholar 

  18. Fazelpour, F., Vafaeipour, M., Rahbari, O., Rosen, M.A.: Intelligent optimization to integrate a plug-in hybrid electric vehicle smart parking lot with renewable energy resources and enhance grid characteristics. Energy Convers. Manag. 77, 250–261 (2014)

    Article  Google Scholar 

  19. Zhu, Z., Lambotharan, S., Chin, W.H., Fan, Z.: A stochastic optimization approach to aggregated electric vehicles charging in smart grids. In: 2014 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), pp. 51–56 (2014)

    Google Scholar 

  20. Malandrino, F., Casetti, C., Chiasserini, C.-F., Reineri, M.: A game-theory analysis of charging stations selection by EV drivers. Perform. Eval. 83–84, 16–31 (2015)

    Article  Google Scholar 

  21. Tikader, R., Ganguly, S.: Energy management at municipal parking deck for charging of plug-in hybrid electric vehicles. In: 2014 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1–5 (2014)

    Google Scholar 

  22. Zheng, Y., Dong, Z.Y., Xu, Y., Meng, K., Zhao, J.H., Qiu, J.: Electric vehicle battery charging/swap stations in distribution systems: comparison study and optimal planning. IEEE Trans. Power Syst. 29, 221–229 (2014)

    Article  Google Scholar 

  23. Liu, C., Zhou, Q., Hu, J., Xu, H., Zhang, H.: Modelling and simulation of centralized electric vehicle charging station wireless communication networks. Procedia Eng. 31, 746–750 (2012)

    Article  Google Scholar 

  24. Quan-Do, V., Jeong-Hyo, B., Jae-Duck, L., Seong-Joon, L.: Monitoring of power allocation in centralized electric vehicle charging spot system. Energy Procedia 17(Part B), 1542–1549 (2012)

    Article  Google Scholar 

  25. Ma, Z., Callaway, D., Hiskens, I.: Decentralized charging control for large populations of plug-in electric vehicles. In: 2010 49th IEEE Conference on Decision and Control (CDC), pp. 206–212 (2010)

    Google Scholar 

  26. Liu, M., Crisostomi, E., Gu, Y., Shorten, R.: Optimal distributed consensus algorithm for fair V2G power dispatch in a microgrid. In: 2014 IEEE International Electric Vehicle Conference (IEVC), pp. 1–7 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Loose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Loose, N., Nurdin, Y., Ghorbani, S., Derksen, C., Unland, R. (2016). Evaluation of Aggregated Systems in Smart Grids: An Example Use-Case for the Energy Option Model. In: Bajo, J., et al. Highlights of Practical Applications of Scalable Multi-Agent Systems. The PAAMS Collection. PAAMS 2016. Communications in Computer and Information Science, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-39387-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39387-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39386-5

  • Online ISBN: 978-3-319-39387-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics