Nothing Special   »   [go: up one dir, main page]

Skip to main content

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 616))

Abstract

One of the main objectives of AI is modelling human reasoning. Since preference information is an indispensable component of common-sense reasoning, the two should be studied in tandem. Argumentation is an established branch of AI dedicated to this task. In this paper, we study how argumentation with preferences models human intuition behind a particular decision making scenario concerning reasoning with rules and preferences. To this end, we present an example of a common-sense reasoning problem complemented with a survey of decisions made by human respondents. The survey reveals an answer that contrasts with solutions offered by various argumentation formalisms. We argue that our results call for advancements of approaches to argumentation with preferences as well as for examination of the type of problems of reasoning with preferences put forward in this paper. Our work contributes to the line of research on preference handling in argumentation, and it also enriches the discussions on the increasingly important topic of preference treatment in AI at large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Since all three cakes are wanted, condition (a) simply indicates that the first round decision is pivotal and involves basically only one rule expressed in condition (b).

  2. 2.

    The survey results can be found at https://www.surveymonkey.com/results/SM-GLNNBZ8Q/. We have surveyed PhD students at the Department of Computing, Imperial College London. Invitations to take the survey were distributed by email via the Department’s PhD students’ mailing list. 79 responses were obtained in a single day. We do not claim any statistically significant findings.

  3. 3.

    By definition, there are infinitely many arguments, but it suffices to consider only a finite number of them, as they represent the essential information; see [9] for details.

  4. 4.

    Two types of rules are commonly used in argumentation: strict rules, whose consequent necessarily follows from the antecedent; and defeasible rules, whose consequent normally (e.g. unless there are exceptions to the rule) follows from the antecedent.

  5. 5.

    For \(\varphi \in \mathcal {L}\), its complement \(-\varphi \) is: \(\lnot \psi \) if \(\varphi = \psi \); and \(\psi \) if \(\varphi = \lnot \psi \).

  6. 6.

    For simplicity, we omit the precise definitions of the consequence operator as well as the relation \(\sqsubseteq \); see [35, 37] for details.

  7. 7.

    With the attack relation specified next, this simplification is meant purely to make the argument framework easier to read.

References

  1. Amgoud, L., Cayrol, C.: A reasoning model based on the production of acceptable arguments. Ann. Math. Artif. Intell. 34(1–3), 197–215 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amgoud, L., Prade, H.: Using arguments for making and explaining decisions. Artif. Intell. 173(3–4), 413–436 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amgoud, L., Vesic, S.: Rich preference-based argumentation frameworks. Int. J. Approximate Reasoning 55(2), 585–606 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(04), 365–410 (2011)

    Article  Google Scholar 

  5. Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: AFRA: argumentation framework with recursive attacks. Int. J. Approximate Reasoning 52(1), 19–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bench-Capon, T.: Persuasion in practical argument using value based argumentation frameworks. J. Logic Comput. 13(3), 429–448 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Besnard, P., García, A., Hunter, A., Modgil, S., Prakken, H., Simari, G., Toni, F.: Introduction to structured argumentation. Argument Computat. 5(1), 1–4 (2014)

    Article  Google Scholar 

  8. Besnard, P., Hunter, A.: A logic-based theory of deductive arguments. Artif. Intell. 128(1–2), 203–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  9. Besnard, P., Hunter, A.: Constructing argument graphs with deductive arguments: a tutorial. Argument Computat. 5(1), 5–30 (2014)

    Article  Google Scholar 

  10. Bondarenko, A., Dung, P.M., Kowalski, R., Toni, F.: An abstract, argumentation-theoretic approach to default reasoning. Artif. Intell. 93(97), 63–101 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brewka, G., Eiter, T.: Preferred answer sets for extended logic programs. Artif. Intell. 109(1–2), 297–356 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Brewka, G., Ellmauthaler, S., Strass, H., Wallner, J., Woltran, S.: Abstract dialectical frameworks revisited. In: Rossi, F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 803–809. IJCAI/AAAI, Beijing (2013)

    Google Scholar 

  13. Brewka, G., Truszczynski, M., Niemelä, I.: Preferences and nonmonotonic reasoning. AI Mag. 29(4), 69–78 (2008)

    Google Scholar 

  14. Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif. Intell. 171(5–6), 286–310 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carrera, Á., Iglesias, C.: A systematic review of argumentation techniques for multi-agent systems research. Artif. Intell. Rev. 44(4), 509–535 (2015)

    Article  Google Scholar 

  16. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp. 293–322. Springer, Heidelberg (1978)

    Chapter  Google Scholar 

  17. Čyras, K., Toni, F.: ABA+: assumption-based argumentation with preferences. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fifteenth International Conference (KR), to appear. Cape Town (2016)

    Google Scholar 

  18. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification and survey of preference handling approaches in nonmonotonic reasoning. Comput. Intell. 20(2), 308–334 (2004)

    Article  MathSciNet  Google Scholar 

  19. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in ai: an overview. Artif. Intell. 175(7–8), 1037–1052 (2011)

    Article  MathSciNet  Google Scholar 

  20. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77, 321–357 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dung, P.M.: An axiomatic Analysis of Structured Argumentation with Priorities. Artif. Intell. 231, 107–150 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dunne, P., Hunter, A., McBurney, P., Parsons, S., Wooldridge, M.: Weighted argument systems: basic definitions, algorithms, and complexity results. Artif. Intell. 175(2), 457–486 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. García, A., Simari, G.: Defeasible logic programming: an argumentative approach. Theor. Pract. Logic Program. 4(2), 95–138 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. García, A., Simari, G.: Defeasible logic programming: DeLP-servers, contextual queries, and explanations for answers. Argument Comput. 5(1), 63–88 (2014)

    Article  Google Scholar 

  25. Gorogiannis, N., Hunter, A.: Instantiating abstract argumentation with classical logic arguments: postulates and properties. Artif. Intell. 175(9–10), 1479–1497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaci, S.: Working with Preferences. Less is More. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  27. Kaci, S., van der Torre, L.: Preference-based argumentation: arguments supporting multiple values. Int. J. Approximate Reasoning 48(3), 730–751 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. Econometrica 47(2), 263–291 (1979)

    Article  MATH  Google Scholar 

  29. Kakas, A., Moraitis, P.: Argumentation based decision making for autonomous agents. In: The Second International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 883–890. ACM Press, Melbourne (2003)

    Google Scholar 

  30. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell. 173(9–10), 901–934 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Modgil, S., Prakken, H.: Reasoning about preferences in structured extended argumentation frameworks. Front. Artif. Intell. Appl. 216(9–10), 347–358 (2010)

    Google Scholar 

  32. Modgil, S., Prakken, H.: A general account of argumentation with preferences. Artif. Intell. 195, 361–397 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Modgil, S., Prakken, H.: The ASPIC+ framework for structured argumentation: a tutorial. Argument Comput. 5(1), 31–62 (2014)

    Article  Google Scholar 

  34. Rahwan, I., Simari, G.: Argumentation in Artificial Intelligence. Springer, Heidelberg (2009)

    Google Scholar 

  35. Toni, F.: A tutorial on assumption-based argumentation. Argument Comput. 5(1), 89–117 (2014)

    Article  MathSciNet  Google Scholar 

  36. Wakaki, T.: Preference-based argumentation built from prioritized logic programming. J. Logic Comput. 25(2), 251–301 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wakaki, T.: Assumption-based argumentation equipped with preferences. In: Dam, H.K., Pitt, J., Xu, Y., Governatori, G., Ito, T. (eds.) PRIMA 2014. LNCS, vol. 8861, pp. 116–132. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristijonas Čyras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Čyras, K. (2016). Argumentation-Based Reasoning with Preferences. In: Bajo, J., et al. Highlights of Practical Applications of Scalable Multi-Agent Systems. The PAAMS Collection. PAAMS 2016. Communications in Computer and Information Science, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-39387-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39387-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39386-5

  • Online ISBN: 978-3-319-39387-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics