Nothing Special   »   [go: up one dir, main page]

Skip to main content

Mining Frequent Attack Sequence in Web Logs

  • Conference paper
  • First Online:
Green, Pervasive, and Cloud Computing

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9663))

Abstract

As a crucial part of web servers, web logs record information about client requests. Logs contain not only the traversal sequences of malicious users but the operations of normal users. Taking advantage of web logs is important for learning the operation of websites. Furthermore, web logs are helpful when conducting postmortem security analysis. However, common methods of analyzing web logs typically focus on discovering preferred browsing paths or improving the structure of website, and thus can not be used directly in security analysis. In this paper, we propose an approach to mining frequent attack sequence based on PrefixSpan. We perform experiments on real data, and the evaluations show that our method is effective in identifying both the behavior of scanners and attack sequences in web logs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Awstats. http://www.awstats.org/

  2. Kibana. https://www.elastic.co/products/kibana

  3. Piwik. http://piwik.org/

  4. Splunk. http://www.splunk.com/

  5. Cooley, R., Mobasher, B., Srivastava, J.: Data preparation for mining world wide web browsing patterns. Knowl. Inf. Syst. 1, 5–32 (1982)

    Article  Google Scholar 

  6. Dziczkowski, G., Wegrzyn-Wolska, K., Bougueroua, L.: An opinion mining approach for web user identification and clients’ behaviour analysis. In: 2013 Fifth International Conference on Computational Aspects of Social Networks (CASoN), pp. 79–84. IEEE (2013)

    Google Scholar 

  7. Han, J., Pei, J., Mortazavi-Asl, B., et al.: FreeSpan: frequent pattern-projected sequential pattern mining. In: Sixth ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 355–359. ACM (2000)

    Google Scholar 

  8. He, J.: Mining users potential interested in personalized information recommendation service. J. Mod. Inf. (2013)

    Google Scholar 

  9. Li, Y., Feng, B.Q., Mao, Q.: Research on path completion technique in web usage mining. In: International Symposium on Computer Science and Computational Technology, pp. 554–559. IEEE (2008)

    Google Scholar 

  10. Kewen, L.: Analysis of preprocessing methods for web usage data. In: 2012 International Conference on Measurement, Information and Control (MIC), pp. 383–386. IEEE (2012)

    Google Scholar 

  11. Mele, I.: Web usage mining for enhancing search-result delivery and helping users to find interesting web content. In: Proceedings of the Sixth ACM International Conference on Web Search and Data Mining, pp. 765–770. ACM (2013)

    Google Scholar 

  12. Nasraoui, O.: Web data mining: exploring hyperlinks, contents, and usage data. ACM SIGKDD Explor. Newsl. 10, 23–25 (2009)

    Article  Google Scholar 

  13. Provos, N., Mcnamee, D., Mavrommatis, P., et al.: The ghost in the browser analysis of web-based malware. In: Usenix Hotbots (2007)

    Google Scholar 

  14. Srivastava, J., Cooley, R., Deshpande, M., et al.: Web usage mining: discovery and applications of usage patterns from web data. ACM SIGKDD Explor. Newsl. 1(2), 12–23 (2000)

    Article  Google Scholar 

  15. Suresh, R.M., Padmajavalli, R.: An overview of data preprocessing in data and web usage mining. In: 2006 1st International Conference on Digital Information Management (2006)

    Google Scholar 

  16. Ting, I.H., Kimble, C., Kudenko, D.: Applying web usage mining techniques to discover potential browsing problems of users. In: IEEE International Conference on Advanced Learning Technologies, pp. 929–930. IEEE Computer Society (2007)

    Google Scholar 

  17. Varnagar, C.R., Madhak, N.N., Kodinariya, T.M., et al.: Web usage mining: a review on process, methods and techniques. In: International Conference on Information Communication and Embedded Systems (ICICES) 2013, pp. 40–46. IEEE (2013)

    Google Scholar 

  18. Wang, T., He, P.L.: User identification in web mining and iris recognition technology. Comput. Eng. 34(6), 182–184 (2008)

    Google Scholar 

  19. Pei, J., Han, J., Mortazavi-Asl, B., et al.: Mining sequential patterns by pattern-growth: the PrefixSpan approach. IEEE Trans. Knowl. Data Eng. 16(11), 1424–1440 (2004)

    Article  Google Scholar 

  20. Qin, C., Liao, C.: Session identification based on linked referrers and web log indexing. Comput. Syst. Sci. Eng. 25(8), 273–286 (2013)

    Google Scholar 

  21. Agrawal, R., Srikant, R.: Mining sequential patterns. In: Proceedings of ICDE, pp. 3–14. IEEE Computer Society (1995)

    Google Scholar 

  22. Srikant, R., Agrawal, R.: Mining sequential patterns: generalizations and performance improvements. In: Apers, P., Bouzeghoub, M., Gardarin, G. (eds.) EDBT 1996. LNCS, vol. 1057, pp. 1–17. Springer, Heidelberg (1996)

    Google Scholar 

Download references

Acknowledgment

This research was supported in part by the National Science Foundation of China under grants 61173166, 61272190, and 61572179, the Program for New Century Excellent Talents in University, and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Sun, H., Sun, J., Chen, H. (2016). Mining Frequent Attack Sequence in Web Logs. In: Huang, X., Xiang, Y., Li, KC. (eds) Green, Pervasive, and Cloud Computing. Lecture Notes in Computer Science(), vol 9663. Springer, Cham. https://doi.org/10.1007/978-3-319-39077-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39077-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39076-5

  • Online ISBN: 978-3-319-39077-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics