Nothing Special   »   [go: up one dir, main page]

Skip to main content

Appling of Neural Networks to Classification of Brain-Computer Interface Data

  • Conference paper
  • First Online:
Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery (BDAS 2015, BDAS 2016)

Abstract

The paper presents application of neural networks to the construction of a brain-computer interface (BCI) based on the Motor Imagery paradigm. The BCI was constructed for ten electroencephalographic (EEG) signals collected and analysed in real time.The filtered signals were divided into three groups corresponding to the information displayed to users on the screen during the experiments. ANOVA analysis and automatic construction of a neural network (NN) classification were also performed. Results of the ANOVA analysis were confirmed by the neural networks efficiency analysis. The efficiency of NN classification of the left and right hemisphere activities reached almost 70 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. An, X., Kuang, D., Guo, X., Zhao, Y., He, L.: A deep learning method for classification of EEG data based on motor imagery. In: Huang, D.-S., Han, K., Gromiha, M. (eds.) ICIC 2014. LNCS, vol. 8590, pp. 203–210. Springer, Heidelberg (2014)

    Google Scholar 

  2. Barbati, G., Porcaro, C., Zappasodi, F., Rossini, P., Tecchio, F.: Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals. Clin. Neurophysiol. 115, 1220–1232 (2004)

    Article  Google Scholar 

  3. Blinowska, K., Kaminski, M.: Multivariate signal analysis by parametric models. In: Schelter, B., Winterhalder, M., Timmer, J. (eds.) Handbook of Time SeriesAnalysis. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2006)

    Google Scholar 

  4. Bromfield, E., Cavazos, J., Sirven, J.: Basic mechanisms underlying seizures and epilepsy. In: An Introduction to Epilepsy (2006)

    Google Scholar 

  5. Broniec-Wojcik, A.: Ph.D. dissertation. AGH, Krakow (2013)

    Google Scholar 

  6. Cho, B., Lee, J., Ku, J., Jang, D., Kim, J., Kim, I., Kim, S.: Attention enhancement system using virtual reality and EEG biofeedback. In: Virtual Reality, Proceedings, IEEE, pp. 156–163 (2002)

    Google Scholar 

  7. Croft, R., Barry, R.: Eog correction: a new perspective. Electroencephalogr. Clin. Neurophysiol. 107, 387–394 (1998)

    Article  Google Scholar 

  8. Croft, R., Barry, R.: Removal of ocular artifact from the EEG: a review. Neuro. Physiol. Clin. 30, 5–19 (2000)

    Google Scholar 

  9. Diab, M., Ismail, G., Al-Jawha, M., Hsaiky, A., Moslem, B., Sabbah, M., Taha, M.: Biofeedback for epilepsy treatment. In: Mechatronics and its Applications (ISMA), pp. 1–4. IEEE (2012)

    Google Scholar 

  10. Geethanjali, P., Mohan, Y., Sen, J.: Time domain feature extraction and classification of eeg data for brain computer interface. In: 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD). IEEE (2012)

    Google Scholar 

  11. Joyce, C., Gorodnitsky, I., Kutas, M.: Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiol. 41, 313–325 (2004)

    Article  Google Scholar 

  12. Jung, T., Makeig, S., Humphries, C., Lee, T.W., Mckeown, M.J., Iragui, V., Sejnowski, T.J.: Removingelectroencephalographic artifacts by blind source separation. Psychophysiol. 37, 163–178 (2000)

    Article  Google Scholar 

  13. al-Ketbi, O., Conrad, M.: Supervised ANN vs. unsupervised SOM to classify EEG data for BCI: Why can GMDH do better? Int. J. Comput. Appl. 74(4), 37–44 (2013)

    Google Scholar 

  14. Kornhuber, H.H., Deecke, L.: Changes in human brain potentials before and after voluntary movement studied by recording on magnetic tape and reverse analysis (1964)

    Google Scholar 

  15. Koronacki, J., Cwik, J.: Statisticcal learning systems (in Polish: Statystyczne systemy uczace sie), Exit (2008)

    Google Scholar 

  16. Lee, S., Abibullaev, B., Kang, W., Shin, Y., An, J.: Analysis of attention deficit hyperactivity disorder in EEG using wavelet transform and self organizing maps. In: Control Automation and Systems (ICCAS), pp. 2439–2442 (2010)

    Google Scholar 

  17. Mingyu, L., Jue, W., Nan, Y., Qin, Y.: Development of EEG biofeedback system based on virtual reality environment. In: Engineering in Medicine and Biology Society, pp. 5362–5364 (2005)

    Google Scholar 

  18. Neuper, C., Miller, G., Kebler, A., Birbaumer, N., Pfurtscheller, G.: Clinical application of an eeg-based brain-computer interface: a case study in a patient with severe motor impairment. Clin. Neurophysiol. 114(3), 399–409 (2003)

    Article  Google Scholar 

  19. Nowak-Brzezińska, A., Jach, T.: The incompleteness factor method as a support of inference in decision support systems. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B. (eds.) BDAS 2014. CCIS, vol. 424, pp. 201–210. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  20. Pfurtscheller, G., Neuper, C.: Motor imagery and direct brain-computer communication. Proc. IEEE 89(7), 1123–1134 (2001)

    Article  Google Scholar 

  21. Pfurtscheller, G., da Silva, L.: Functional Meaning of Event-Related Desynchronization (ERD) and Synchronization (ERS), pp. 51–65 (1999)

    Google Scholar 

  22. Shim, B., Lee, S.W., Shin., J.H.: Implementation of a 3-dimensional game fordeveloping balanced brainwave. In: Software Engineering Research, Management & Applications, SERA 2007 (2007)

    Google Scholar 

  23. Suresh, K., Heng, J.: Quantitative eeg parameters for monitoring and biofeedback during rehabilitation after stroke. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics (2009)

    Google Scholar 

  24. Van Vliet, M., Robben, A., Chumerin, N., Manyakov, N., Combaz, A., Van Hulle, M.: Designing a brain-computer interface controlled video-game using consumer grade EEG hardware. In: Biosignals and Biorobotics Conference (BRC 2012), pp. 1–6. ISSNIP (2012)

    Google Scholar 

  25. Vidal, J.: Toward direct brain-computer communication. Ann. Rev. Biophys. Bioeng. 2(1), 157–180 (1973)

    Article  Google Scholar 

  26. Wolpaw, J., Birbaumer, N., Heetderks, W., McFarland, D., Peckham, P., Schalk, G., Vaughan, T.: Brain-computer interface technology: a review of the firstinternational meeting. IEEE Trans. Rehabil. Eng. 8(2), 164–173 (2000)

    Article  Google Scholar 

  27. Żbikowski, K.: Time series forecasting with volume weighted support vector machines. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B. (eds.) BDAS 2014. CCIS, vol. 424, pp. 250–258. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  28. Zielosko, B.: Optimization of inhibitory decision rules relative to coverage - comparative studys. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds.) BDAS 2014. CCIS, vol. 521, pp. 267–276. Springer, Heidelberg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malgorzata Plechawska-Wojcik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Plechawska-Wojcik, M., Wolszczak, P. (2016). Appling of Neural Networks to Classification of Brain-Computer Interface Data. In: Kozielski, S., Mrozek, D., Kasprowski, P., Małysiak-Mrozek, B., Kostrzewa, D. (eds) Beyond Databases, Architectures and Structures. Advanced Technologies for Data Mining and Knowledge Discovery. BDAS BDAS 2015 2016. Communications in Computer and Information Science, vol 613. Springer, Cham. https://doi.org/10.1007/978-3-319-34099-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-34099-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-34098-2

  • Online ISBN: 978-3-319-34099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics