Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Method to Finding All Nash Equilibria

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques (IScIDE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9243))

Abstract

It is a main concern in applications of game theory to effectively select a Nash equilibrium. All Nash equilibria is often required to be computed for this selection process. However, it is well known that the problem of finding only one mixed-strategy Nash equilibrium is a PPAD-complete process. Therefore, it is very hard to find all Nash equilibrium for a certain problem by traditional methods. By exploiting the properties of multilinear terms in the payoff functions, this paper presents a good approximation of the multilinear terms and develops a mixed-integer linear programming for finding all mixed-strategy Nash equilibria. An example of this method will be given too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nash, J.F.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  2. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a nash equilibrium. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 71–78 (2006)

    Google Scholar 

  3. Chen, X., Deng, X.: Settling the complexity of two-player nash equilibrium. In: Proceedings of the 47th Annual Symposium on Foundations of Computer Science (FOCS), pp. 261–272 (2006)

    Google Scholar 

  4. Lemke, C.E., Howson, J.T.: Equilibrium points of bimatrix games. J. Soc. Ind. Appl. Math. 12(2), 413–423 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  5. Wilson, R.: Computing equilibria of n-person games. SIAM J. Appl. Math. 21(1), 80–87 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rosenmüller, J.: On a generalization of the lemke-howson algorithm to noncooperative n-person games. SIAM J. Appl. Math. 21(1), 73–79 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Nash, J.F.: Equilibrium points in n-person games. Proc. Nat. Acad. Sci. 36(1), 48–49 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  8. Scarf, H.E.: The approximation of fixed points of a continuous mapping. SIAM J. Appl. Math. 15(5), 1328–1343 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dang, C.: The D1-triangulation of Rn for simplicial algorithms for computing solutions of nonlinear equations. Math. Oper. Res. 16(1), 148–161 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Allgower, E.L., Georg, K.: Piecewise linear methods for nonlinear equations and optimization. J. Comput. Appl. Math. 124(1), 245–261 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Garcia, C.B., Lemke, C.E., Luethi, H.: Simplicial approximation of an equilibrium point of noncooperative n-person games. Math. Program. 4, 227–260 (1973)

    Article  MATH  Google Scholar 

  12. Van der Laan, G., Talman, A.J.J., Van der Heyden, L.: Simplicial variable dimension algorithms for solving the nonlinear complementarity problem on a product of unit simplices using a general labelling. Math. Oper. Res. 12(3), 377–397 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Doup, T.M., Talman, A.J.J.: A new simplicial variable dimension algorithm to find equilibria on the product space of unit simplices. Math. Program. 37(3), 319–355 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harsanyi, J.C.: The tracing procedure: a bayesian approach to defining a solution for n-person noncooperative games. Int. J. Game Theor. 4(2), 61–94 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. Van den Elzen, A.H., Talman, A.J.J.: A procedure for finding nash equilibria in bi-matrix games. Math. Methods Oper. Res. 35(1), 27–43 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Herings, P.J.J., Van den Elzen, A.: Computation of the nash equilibrium selected by the tracing procedure in n-person games. Game Econ. Behav. 38(1), 89–117 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. McKelvey, R.D., McLennan, A.: Computation of equilibria in finite games. Handb. Comput. Econ. 1, 87–142 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Von Stengel, B.: Computing equilibria for two-person games. Handb. game Theor. Econ. Appl. 3, 1723–1759 (2002)

    Google Scholar 

  19. Kosrnnva, M.M., Kinard, L.A.: A differentiable homotopy approach for solving polynomial optimization problems and noncooperative games. Comput. Math. Appl. 21(6–7), 135–143 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Herings, P.J.J., Peeters, R.J.A.P.: A globally convergent algorithm to compute all nash equilibria for n-person games. Ann. Oper. Res. 137(1), 349–368 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  21. Datta, R.S.: Finding all nash equilibria of a finite game using polynomial algebra. Econ. Theor. 42(1), 55–96 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sandholm, T., Gilpin, A., Conitzer, V.: Mixed-integer programming methods for finding nash equilibria. In: Proceedings of the National Conference on Artificial Intelligence, pp. 495–501 (2005)

    Google Scholar 

  23. Avis, D., Rosenberg, G.D., Savani, R., Von Stengel, B.: Enumeration of nash equilibria for two-player games. Econ. Theor. 42(1), 9–37 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, Z., Dang, C., Karimi, H.R., Zhu, C., Gao, Q.: A mixed 0-1 linear programming approach to the computation of all pure-strategy nash equilibria of a finite n-person game in normal form. Mathematical Problems in Engineering, vol. 2014, p. 8 (2014)

    Google Scholar 

  25. Luedtke, J., Namazifar, M., Linderoth, J.: Some results on the strength of relaxations of multilinear functions. Math. Program. 136(2), 325–351 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was partially supported by GRF(CityU 112910 of Hong Kong SAR Government), ARG(CityU 9667080 of Hong Kong SAR Government), the National Natural Science Foundation of China under Grant No.61472267 and Nature Foundation of Jiangsu Province under Grant No.BK2012166.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengtian Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wu, Z., Dang, C., Hu, F., Fu, B. (2015). A New Method to Finding All Nash Equilibria. In: He, X., et al. Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques. IScIDE 2015. Lecture Notes in Computer Science(), vol 9243. Springer, Cham. https://doi.org/10.1007/978-3-319-23862-3_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23862-3_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23861-6

  • Online ISBN: 978-3-319-23862-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics