Abstract
Carma is a new language recently defined to support quantified specification and analysis of collective adaptive systems. It is a stochastic process algebra equipped with linguistic constructs specifically developed for modelling and programming systems that can operate in open-ended and unpredictable environments. This class of systems is typically composed of a huge number of interacting agents that dynamically adjust and combine their behaviour to achieve specific goals. A Carma model, termed a “collective”, consists of a set of components, each of which exhibits a set of attributes. To model dynamic aggregations, which are sometimes referred to as “ensembles”, Carma provides communication primitives based on predicates over the exhibited attributes. These predicates are used to select the participants in a communication. Two communication mechanisms are provided in the Carma language: multicast-based and unicast-based. A key feature of Carma is the explicit representation of the environment in which processes interact, allowing rapid testing of a system under different open world scenarios. The environment in Carma models can evolve at runtime, due to the feedback from the system, and it further modulates the interaction between components, by shaping rates and interaction probabilities.
This work is partially supported by the EU project QUANTICOL, 600708.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
For any denumerable set X, we let Dist(X) denote the set of probability distributions over X while \(\delta _{X}\) is a generic element in Dist(X).
- 2.
Due to the symmetry of the considered model, any other location in the border presents similar results.
References
Compagnoni, A., Giannini, P., Kim, C., Milideo, M., Sharma, V.: A calculus of located entities. In: Proceedings of DCM 2013 (2014)
Compagnoni, A., Sharma, V., Bao, Y., Libera, M., Suhkishvili, S., Bidinger, P., Bioglio, L., Bonelli, E.: Biospace: a modeling and simulation language for bacteria-materials interactions. ENTCS 293, 35–49 (2013)
Alrahman, Y., De Nicola, R., Loreti, M., Tiezzi, F., Vigo, R.: A calculus for attribute-based communication. In: Proceedings of SAC 2015 (2015, to appear)
Steiniger, A., Krüger, F., Uhrmacher, A.M.: Modeling agents and their environment in multi-level-DEVS. In: Proceedings of the 2012 Winter Simulation Conference, Berlin, Germany. IEEE (2012)
Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theor. Comput. Sci. 202(1–2), 1–54 (1998)
Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.: MODEST: a compositional modeling formalism for hard and softly timed systems. IEEE Trans. Softw. Eng. 32(10), 812–830 (2006)
Bordini, R.H., Okuyama, F.Y., de Oliveira, D., Drehmer, G., Krafta, R.C.: The MAS-SOC approach to multi-agent based simulation. In: Lindemann, G., Moldt, D., Paolucci, M. (eds.) RASTA 2002. LNCS (LNAI), vol. 2934, pp. 70–91. Springer, Heidelberg (2004)
Bortolussi, L., Hillston, J., Tribastone, M.: Fluid performability analysis of nested automata models. Electr. Notes Theor. Comput. Sci. 310, 27–47 (2015)
Bortolussi, L., Policriti, A.: Hybrid dynamics of stochastic programs. Theor. Comput. Sci. 411(20), 2052–2077 (2010)
Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213 (2000)
Celaya, J.R., Desrochers, A.A., Graves, R.J.: Modeling and analysis of multi-agent systems using petri nets. JCP 4(10), 981–996 (2009)
Ciocchetta, F., Hillston, J.: Bio-PEPA: a framework for the modelling and analysis of biological systems. Theor. Comput. Sci. 410(33), 3065–3084 (2009)
Maus, C., Rybacki, S., Uhrmacher, A.M.: Rule-based multi-level modelling of cell biological systems. BMC Syst. Biol. 5, 166 (2011)
De Nicola, R., Latella, D., Massink, M.: Formal modeling and quantitative analysis of klaim-based mobile systems. In: Proceedings of the 2005 ACM Symposium on Applied Computing (SAC), Santa Fe, New Mexico, USA, 13–17 March 2005, pp. 428–435. ACM (2005)
De Nicola, R., Loreti, M., Pugliese, R., Tiezzi, F.: A formal approach to autonomic systems programming: the SCEL language. TAAS 9(2), 7 (2014)
Feng, C., Hillston, J.: PALOMA: a process algebra for located Markovian agents. In: Norman, G., Sanders, W. (eds.) QEST 2014. LNCS, vol. 8657, pp. 265–280. Springer, Heidelberg (2014)
Feng, C., Hillston, J.: Speed-up of stochastic simulation of PCTMC models by statistical model reduction (2015, Submitted)
Galpin, V.: Modelling network performance with a spatial stochastic process algebra. In: Proceedings of International Conference on Advanced Information Networking and Applications, pp. 41–49. IEEE (2009)
Gilmore, S., Hillston, J., Kloul, L., Ribaudo, M.: PEPA nets: a structured performance modelling formalism. Perform. Eval. 54, 79–104 (2003)
Helleboogh, A., Vizzari, G., Uhrmacher, A.M., Michel, F.: Modeling dynamic environments in multi-agent simulation. Auton. Agents Multi-Agent Syst. 14(1), 87–116 (2007)
Hermanns, H., Herzog, U., Katoen, J.: Process algebra for performance evaluation. Theor. Comput. Sci. 274(1–2), 43–87 (2002)
Hermanns, H., Rettelbach, M.: Syntax, semantics, equivalences and axioms for MTIPP. In: Herzog, U., Rettelbach, M. (eds.) Proceedings of 2nd Process Algebra and Performance Modelling Workshop (1994)
Hillston, J.: A Compositional Approach to Performance Modelling. CUP (1995)
Latella, D., Loreti, M., Massink, M., Senni, V.: Stochastically timed predicate-based communication primitives for autonomic computing. In: Bertrand, N., Bortolussi, L. (eds.) Proceedings Twelfth International Workshop on Quantitative Aspects of Programming Languages and Systems, QAPL 2014, Grenoble, France, 12–13 April 2014. EPTCS, vol. 154, pp. 1–16 (2014)
Bortolussi, L., Nicola, R.D., Galpin, V., Gilmore, S., Hillston, J., Latella, D., Loreti, M., Massink, M.: Carma: collective adaptive resource-sharing markovian agents. In: Proceedings of the Workshop on Quantitative Analysis of Programming Languages 2015 (2015, to appear)
Mili, R.Z., Steiner, R.: Modeling agent-environment interactions in adaptive MAS. In: Weyns, D., Brueckner, S.A., Demazeau, Y. (eds.) EEMMAS 2007. LNCS (LNAI), vol. 5049, pp. 135–147. Springer, Heidelberg (2008)
Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I. Inf. Comput. 100(1), 1–40 (1992)
John, M., Lhoussaine, C., Niehren, J., Uhrmacher, A.M.: The attributed pi calculus. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 83–102. Springer, Heidelberg (2008)
Priami, C.: Stochastic \(\pi \)-calculus. Comput. J. 38(7), 578–589 (1995)
Regev, A., Panina, E.M., Silverman, W., Cardelli, L., Shapiro, E.Y.: Bioambients: an abstraction for biological compartments. Theor. Comput. Sci. 325(1), 141–167 (2004)
Saunier, J., Balbo, F., Pinson, S.: A formal model of communication and context awareness in multiagent systems. J. Logic Lang. Inf. 23(2), 219–247 (2014)
Tribastone, M., Gilmore, S., Hillston, J.: Scalable differential analysis of process algebra models. IEEE Trans. Softw. Eng. 38(1), 205–219 (2012)
Weyns, D., Holvoet, T.: A formal model for situated multi-agent systems. Fundam. Inform. 63(2–3), 125–158 (2004)
Weyns, D., Omicini, A., Odell, J.: Environment as a first class abstraction in multiagent systems. Auton. Agents Multi-Agent Syst. 14(1), 5–30 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Hillston, J., Loreti, M. (2015). Specification and Analysis of Open-Ended Systems with CARMA. In: Weyns, D., Michel, F. (eds) Agent Environments for Multi-Agent Systems IV. Lecture Notes in Computer Science(), vol 9068. Springer, Cham. https://doi.org/10.1007/978-3-319-23850-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-23850-0_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23849-4
Online ISBN: 978-3-319-23850-0
eBook Packages: Computer ScienceComputer Science (R0)