Nothing Special   »   [go: up one dir, main page]

Skip to main content

Canonical Representatives of Morphic Permutations

  • Conference paper
  • First Online:
Combinatorics on Words (WORDS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9304))

Included in the following conference series:

  • International Conference on Combinatorics on Words
  • 453 Accesses

Abstract

An infinite permutation can be defined as a linear ordering of the set of natural numbers. In particular, an infinite permutation can be constructed with an aperiodic infinite word over \(\{0,\ldots ,q-1\}\) as the lexicographic order of the shifts of the word. In this paper, we discuss the question if an infinite permutation defined this way admits a canonical representative, that is, can be defined by a sequence of numbers from [0, 1], such that the frequency of its elements in any interval is equal to the length of that interval. We show that a canonical representative exists if and only if the word is uniquely ergodic, and that is why we use the term ergodic permutations. We also discuss ways to construct the canonical representative of a permutation defined by a morphic word and generalize the construction of Makarov, 2009, for the Thue-Morse permutation to a wider class of infinite words.

S. Puzynina—Supported by the LABEX MILYON (ANR-10-LABX-0070) of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allouche, J.-P., Shallit, J.: Automatic Sequences – Theory, Applications, Generalizations. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  2. Allouche, J.-P., Shallit, J.: The ubiquitous Prouhet-Thue-Morse sequence. In: Ding, C., Helleseth, T., Niederreiter, H. (eds.) Sequences and Their Applications. Discrete Mathematics and Theoretical Computer Science, pp. 1–16. Springer, London (1999)

    Chapter  Google Scholar 

  3. Amigó, J.: Permutation Complexity in Dynamical Systems - Ordinal Patterns, Permutation Entropy and All That. Springer Series in Synergetics. Springer, Heidelberg (2010)

    Book  MATH  Google Scholar 

  4. Avgustinovich, S.V., Frid, A., Kamae, T., Salimov, P.: Infinite permutations of lowest maximal pattern complexity. Theort. Comput. Sci. 412, 2911–2921 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avgustinovich, S.V., Frid, A.E., Puzynina, S.: Ergodic infinite permutations of minimal complexity. In: Potapov, I. (ed.) DLT 2015. LNCS, vol. 9168, pp. 71–84. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  6. Bandt, C., Keller, G., Pompe, B.: Entropy of interval maps via permutations. Nonlinearity 15, 1595–1602 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Elizalde, S.: The number of permutations realized by a shift. SIAM J. Discrete Math. 23, 765–786 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ferenczi, S., Monteil, T.: Infinite words with uniform frequencies, and invariant measures. Combinatorics, automata and number theory. Encyclopedia Math. Appl. 135, 373–409 (2010). Cambridge University Press

    MathSciNet  Google Scholar 

  9. Dumont, J.-M., Thomas, A.: Systèmes de numération et fonctions fractales relatifs aux substitutions. Theoret. Comput. Sci. 65(2), 153–169 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fon-Der-Flaass, D.G., Frid, A.E.: On periodicity and low complexity of infinite permutations. Eur. J. Combin. 28, 2106–2114 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frid, A.: Fine and Wilf’s theorem for permutations. Sib. Elektron. Mat. Izv. 9, 377–381 (2012)

    MathSciNet  Google Scholar 

  12. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  13. Makarov, M.: On permutations generated by infinite binary words. Sib. Elektron. Mat. Izv. 3, 304–311 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Makarov, M.: On an infinite permutation similar to the Thue-Morse word. Discrete Math. 309, 6641–6643 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Makarov, M.: On the permutations generated by Sturmian words. Sib. Math. J. 50, 674–680 (2009)

    Article  MathSciNet  Google Scholar 

  16. Morse, M., Hedlund, G.: Symbolic dynamics II: Sturmian sequences. Amer. J. Math. 62, 1–42 (1940)

    Article  MathSciNet  Google Scholar 

  17. Valyuzhenich, A.: On permutation complexity of fixed points of uniform binary morphisms. Discr. Math. Theoret. Comput. Sci. 16, 95–128 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Widmer, S.: Permutation complexity of the Thue-Morse word. Adv. Appl. Math. 47, 309–329 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Widmer, S.: Permutation complexity related to the letter doubling map. In: WORDS 2011 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna E. Frid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Avgustinovich, S.V., Frid, A.E., Puzynina, S. (2015). Canonical Representatives of Morphic Permutations. In: Manea, F., Nowotka, D. (eds) Combinatorics on Words. WORDS 2015. Lecture Notes in Computer Science(), vol 9304. Springer, Cham. https://doi.org/10.1007/978-3-319-23660-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23660-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23659-9

  • Online ISBN: 978-3-319-23660-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics