Nothing Special   »   [go: up one dir, main page]

Skip to main content

Towards a Dual Process Cognitive Model for Argument Evaluation

  • Conference paper
  • First Online:
Scalable Uncertainty Management (SUM 2015)

Abstract

In this paper we are interested in the computational and formal analysis of the persuasive impact that an argument can produce on a human agent. We propose a dual process cognitive computational model based on the highly influential work of Kahneman and investigate its reasoning mechanisms in the context of argument evaluation. This formal model is a first attempt to take a greater account of human reasoning and is a first step to a better understanding of persuasion processes as well as human argumentative strategies, which is crucial in collective decision making domain.

This work has been supported by the Agence Nationale de la Recherche (grant ANR-12-CORD-0012) and has benefited from useful discussion in Dagstuhl Seminar 15221 “Multi-disciplinary approaches to reasoning”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Note that S1 and S2 are linked as we will see in (1) of Definition 3.

  2. 2.

    Inspired from the Desire-Generation rules (of Rahwan and Amgoud [25]).

  3. 3.

    French funded project aiming at improving durum wheat sustainability (http://www.agence-nationale-recherche.fr/?Project=ANR-13-ALID-0002).

  4. 4.

    Note that we could also have given more weight to the depth in the stack than to iteration or conversely, hence transform the equation into \({\mathtt {weight}}(D)=\alpha .\sum _{i=1}^n d_i +\beta .n\) with a “smart” tuning of the ratio between \(\alpha \) and \(\beta \) (this tuning should be based on psychological experiments).

  5. 5.

    In practice, a constructive method to obtain \(R_\varphi \) could be an adaptation of Dijkstra algorithm on a graph where the vertices are partial reflection paths. An arc would link a vertex to another vertex if it corresponds to an extension of the path of one iteration (hence there would be as many arcs starting from a given vertex as the stack corresponding to this vertex is deep), namely there would be an arc between \((\varphi _1,\varphi _2)\) and \((\varphi _1,\varphi _2,\varphi _3)\). The algorithm should start from the vertex corresponding to the empty path (i.e. it corresponds to the initial concept \(\varphi \)) and find a shortest path to a vertex with a non-empty flag. The length of a path would be the \({\mathtt {weight}}\) of the reflection path \(R_\varphi \) contained in the last vertex of the path.

  6. 6.

    Note that we propose to be neutral wrt an argument that uses an unknown warrant.

References

  1. Amgoud, L., Maudet, N., Parsons, S.: An argumentation-based semantics for agent communication languages. In: ECAI 2002, pp. 38–42. IOS Press (2002)

    Google Scholar 

  2. Beevers, C.G.: Cognitive vulnerability to depression: a dual process model. Clin. Psychol. Rev. 25(7), 975–1002 (2005)

    Article  Google Scholar 

  3. Benferhat, S., Dupin de Saint Cyr - Bannay, F.: Contextual handling of conditional knowledge. In: Proceedings of IPMU 1996, Granada, Spain, July 1996

    Google Scholar 

  4. Blair, J.A., Johnson, R.H.: Informal logic: an overview. Informal Logic 20(2), 93–108 (2000)

    Google Scholar 

  5. Burrows, R., Johnson, H., Johnson, P.: Developing an online social media system to influence pro-environmental behaviour based on user values. In: ICPT (2014)

    Google Scholar 

  6. Chaiken, S.: The heuristic model of persuasion. In: Social influence: The Ontario Symposium, vol. 5, pp. 3–37 (1987)

    Google Scholar 

  7. Cialdini, R.: Influence: Science and Practice. Allyn and Bacon, Boston (2001)

    Google Scholar 

  8. Clements, C.S.: Perception and persuasion in legal argumentation: using informal fallacies and cognitive biases to win the war of words. BYU Law Rev. 2013(2), 319 (2013)

    MathSciNet  Google Scholar 

  9. Croskerry, P., Singhal, G., Mamede, S.: Cognitive debiasing 1: origins of bias and theory of debiasing. BMJ Qual. Saf. 22(Suppl 2), 58–64 (2013)

    Google Scholar 

  10. Epstein, S.: Integration of the cognitive and the psychodynamic unconscious. Am. Psychol. 49(8), 709–724 (1994)

    Article  Google Scholar 

  11. Evans, J.S.B.T., Curtis-Holmes, J.: Rapid responding increases belief bias: evidence for the dual-process theory of reasoning. Think. Reasoning 11(4), 382–389 (2005)

    Article  Google Scholar 

  12. Forget, A., Chiasson, S., van Oorschot, P.C., Biddle, R.: Persuasion for stronger passwords: motivation and pilot study. In: Oinas-Kukkonen, H., Hasle, P., Harjumaa, M., Segerståhl, K., Øhrstrøm, P. (eds.) PERSUASIVE 2008. LNCS, vol. 5033, pp. 140–150. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Hamblin, C.: Fallacies. University paperback, Methuen (1970)

    Google Scholar 

  14. Hélie, S., Sun, R.: Incubation, insight, and creative problem solving: a unified theory and a connectionist model. Psychol. Rev. 117(3), 994–1024 (2010)

    Article  Google Scholar 

  15. Hornikx, J., Hahn, U.: Reasoning and argumentation: towards an integrated psychology of argumentation. Think. Reasoning 18(3), 225–243 (2012)

    Article  Google Scholar 

  16. Korb, K.B., Mcconachy, R., Zukerman, I.: A cognitive model of argumentation. In: Proceedings of the Nineteenth Annual Conference of the Cognitive Science Society, pp. 400–405 (1997)

    Google Scholar 

  17. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential models and cumulative logics. Artif. Intell. 44, 167–207 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Larue, O., Poirier, P., Nkambou, R.: Emotional emergence in a symbolic dynamical architecture. In: Chella, A., Pirrone, R., Sorbello, R., Jóhannsdóttir, K.R. (eds.) Biologically Inspired Cognitive Architectures 2012. AISC, vol. 196, pp. 199–204. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Lehto, T., Oinas-Kukkonen, H.: Explaining and predicting perceived effectiveness and use continuance intention of a behaviour change support system for weight loss. Behav. Inf. Technol. 34(2), 176–189 (2015)

    Article  Google Scholar 

  20. Mackenzie, J.: Four dialogue systems. Stud. Logica 49(4), 567–583 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  21. Oinas-Kukkonen, H.: A foundation for the study of behavior change support systems. Pers. Ubiquit. Comput. 17(6), 1223–1235 (2013)

    Article  Google Scholar 

  22. Perelman, C., Olbrechts-Tyteca, L.: The New Rhetoric: A Treatise on Argumentation. University of Notre Dame Press, Notre Dame (1969)

    Google Scholar 

  23. Petty, R., Cacioppo, J.: The elaboration likelihood model of persuasion. Adv. Exp. Soc. Psychol. 19(C), 123–205 (1986)

    Article  Google Scholar 

  24. Prakken, H.: Formal systems for persuasion dialogue. Knowl. Eng. Rev. 21(2), 163–188 (2006)

    Article  Google Scholar 

  25. Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning. In: Proceedings of the Fifth International Joint Conference on Autonomous Agents and MultiAgent Systems, pp. 347–354 (2006)

    Google Scholar 

  26. Sloman, S.A.: The empirical case for two systems of reasoning. Psychol. Bull. 119(1), 3–22 (1996)

    Article  Google Scholar 

  27. Strannegård, C., von Haugwitz, R., Wessberg, J., Balkenius, C.: A cognitive architecture based on dual process theory. In: Kühnberger, K.-U., Rudolph, S., Wang, P. (eds.) AGI 2013. LNCS, vol. 7999, pp. 140–149. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Touretzky, D.: Implicit ordering of defaults in inheritance systems. In: Proceedings of AAAI 1984. University of Texas at Austin (1984)

    Google Scholar 

  29. Tversky, A., Kahneman, D.: Judgment under uncertainty: heuristics and biases. Science 185(4157), 1124–1131 (1974)

    Article  Google Scholar 

  30. van Knippenberg, D.: Social identity and persuasion: reconsidering the role of group membership. In: Social Identity and Social Cognition, vol. XVII, pp. 315–331 (1999)

    Google Scholar 

  31. Walton, D.: Logical Dialogue: Games and Fallacies. University Press of America, Lanham (1984)

    Google Scholar 

  32. Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  33. Wood, W.: Attitude change: persuasion and social influence. Annu. Rev. Psychol. 51(1), 539–570 (2000)

    Article  Google Scholar 

  34. Zaller, J.: The Nature and Origins of Mass Opinion. Cambridge Studies in Political Psychology Series. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Bisquert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bisquert, P., Croitoru, M., de Saint-Cyr, F.D. (2015). Towards a Dual Process Cognitive Model for Argument Evaluation. In: Beierle, C., Dekhtyar, A. (eds) Scalable Uncertainty Management. SUM 2015. Lecture Notes in Computer Science(), vol 9310. Springer, Cham. https://doi.org/10.1007/978-3-319-23540-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23540-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23539-4

  • Online ISBN: 978-3-319-23540-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics