Nothing Special   »   [go: up one dir, main page]

Skip to main content

Time-Varying Parametric Modeling of ECoG for Syllable Decoding

  • Conference paper
  • First Online:
Brain Informatics and Health (BIH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9250))

Included in the following conference series:

Abstract

As a step toward developing neuroprostheses, the purpose of this study is to explore syllable decoding in a subject with implanted electrocorticographic (ECoG) recordings. For this study, we use ECoG signals recorded while a subject volunteered to perform a task in which the patient has been visually cued to speak isolated consonant-vowel syllables varying in their articulatory features. We propose a recursive estimation method to calculate the parametric model coefficients in each time instant and band power features from individual ECoG sites are extracted to decode the articulated syllables. Our findings may contribute to the development of brain machine interface (BMI) systems for syllable-level speech rehabilitation in handicapped individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gosseries, O., Vanhaudenhuyse, A., Bruno, M.-A., Demertzi, A., Schnakers, C., Boly, M.M., et al.: Disorders of consciousness: coma, vegetative and minimally conscious states. In: States of Consciousness, pp. 29–55. Springer (2011)

    Google Scholar 

  2. Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kübler, A., et al.: A spelling device for the paralysed. Nature 398, 297–298 (1999)

    Article  Google Scholar 

  3. Birbaumer, N., Hinterberger, T., Kubler, A., Neumann, N.: The thought-translation device (TTD): neurobehavioral mechanisms and clinical outcome. IEEE Transactions on Neural Systems and Rehabilitation Engineering 11, 120–123 (2003)

    Article  Google Scholar 

  4. Birbaumer, N., Kübler, A., Ghanayim, N., Hinterberger, T., Perelmouter, J., Kaiser, J., et al.: IV. Future Work. IEEE Transactions on rehabilitation Engineering 8, 191 (2000)

    Article  Google Scholar 

  5. Donchin, E., Spencer, K.M., Wijesinghe, R.: The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Transactions on Rehabilitation Engineering 8, 174–179 (2000)

    Article  Google Scholar 

  6. Krusienski, D.J., Sellers, E.W., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R.: Toward enhanced P300 speller performance. Journal of neuroscience methods 167, 15–21 (2008)

    Article  Google Scholar 

  7. Nijboer, F., Sellers, E., Mellinger, J., Jordan, M., Matuz, T., Furdea, A., et al.: A P300-based brain–computer interface for people with amyotrophic lateral sclerosis. Clinical neurophysiology 119, 1909–1916 (2008)

    Article  Google Scholar 

  8. Sellers, E.W., Donchin, E.: A P300-based brain–computer interface: initial tests by ALS patients. Clinical neurophysiology 117, 538–548 (2006)

    Article  Google Scholar 

  9. Cheng, M., Gao, X., Gao, S., Xu, D.: Design and implementation of a brain-computer interface with high transfer rates. IEEE Transactions on Biomedical Engineering 49, 1181–1186 (2002)

    Article  Google Scholar 

  10. Friman, O., Luth, T., Volosyak, I., Graser, A.: Spelling with steady-state visual evoked potentials. In: 3rd International IEEE/EMBS Conference on Neural Engineering, CNE 2007, pp. 354–357 (2007)

    Google Scholar 

  11. Vaughan, T.M., McFarland, D.J., Schalk, G., Sarnacki, W.A., Krusienski, D.J., Sellers, E.W., et al.: The wadsworth BCI research and development program: at home with BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering 14, 229–233 (2006)

    Article  Google Scholar 

  12. Pei, X., Barbour, D.L., Leuthardt, E.C., Schalk, G.: Decoding vowels and consonants in spoken and imagined words using electrocorticographic signals in humans. Journal of neural engineering 8, 046028 (2011)

    Article  Google Scholar 

  13. Neuper, C., Müller-Putz, G.R., Scherer, R., Pfurtscheller, G.: Motor imagery and EEG-based control of spelling devices and neuroprostheses. Progress in brain research 159, 393–409 (2006)

    Article  Google Scholar 

  14. Scherer, R., Muller, G., Neuper, C., Graimann, B., Pfurtscheller, G.: An asynchronously controlled EEG-based virtual keyboard: improvement of the spelling rate. IEEE Transactions on Biomedical Engineering 51, 979–984 (2004)

    Article  Google Scholar 

  15. Guenther, F.H., Brumberg, J.S., Wright, E.J., Nieto-Castanon, A., Tourville, J.A., Panko, M., et al.: A wireless brain-machine interface for real-time speech synthesis. PloS one 4, e8218 (2009)

    Article  Google Scholar 

  16. DaSalla, C.S., Kambara, H., Sato, M., Koike, Y.: Single-trial classification of vowel speech imagery using common spatial patterns. Neural Networks 22, 1334–1339 (2009)

    Article  Google Scholar 

  17. Kellis, S., Miller, K., Thomson, K., Brown, R., House, P., Greger, B.: Decoding spoken words using local field potentials recorded from the cortical surface. Journal of neural engineering 7, 056007 (2010)

    Article  Google Scholar 

  18. Zhang, D., Gong, E., Wu, W., Lin, J., Zhou, W., Hong, B.: Spoken sentences decoding based on intracranial high gamma response using dynamic time warping. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 3292–3295 (2012)

    Google Scholar 

  19. Deng, S., Srinivasan, R., Lappas, T., D’Zmura, M.: EEG classification of imagined syllable rhythm using Hilbert spectrum methods. Journal of neural engineering 7, 046006 (2010)

    Article  Google Scholar 

  20. Bai, O., Nakamura, M., Ikeda, A., Shibasaki, H.: Nonlinear Markov process amplitude EEG model for nonlinear coupling interaction of spontaneous EEG. IEEE Transactions on Biomedical Engineering 47, 1141–1146 (2000)

    Article  Google Scholar 

  21. Ting, C.-M., Salleh, S.-H., Zainuddin, Z., Bahar, A.: Spectral estimation of nonstationary EEG using particle filtering with application to event-related desynchronization (ERD). IEEE Transactions on Biomedical Engineering 58, 321–331 (2011)

    Article  Google Scholar 

  22. Poulimenos, A., Fassois, S.: Parametric time-domain methods for non-stationary random vibration modelling and analysis—a critical survey and comparison. Mechanical Systems and Signal Processing 20, 763–816 (2006)

    Article  Google Scholar 

  23. Schlögl, A.: The electroencephalogram and the adaptive autoregressive model: theory and applications. Shaker, Germany (2000)

    Google Scholar 

  24. Khan, M.E., Dutt, D.N.: An expectation-maximization algorithm based Kalman smoother approach for event-related desynchronization (ERD) estimation from EEG. IEEE Transactions on Biomedical Engineering 54, 1191–1198 (2007)

    Article  Google Scholar 

  25. Niedzwiecki, M.: Identification of time-varying processes. Wiley, New York (2000)

    Google Scholar 

  26. Duncan, J.S., Papademetris, X., Yang, J., Jackowski, M., Zeng, X., Staib, L.H.: Geometric strategies for neuroanatomic analysis from MRI. Neuroimage 23, S34–S45 (2004)

    Article  Google Scholar 

  27. Goldman, D.: The clinical use of the “average” reference electrode in monopolar recording. Electroencephalography and clinical neurophysiology 2, 209–212 (1950)

    Article  Google Scholar 

  28. Pistohl, T., Schulze-Bonhage, A., Aertsen, A., Mehring, C., Ball, T.: Decoding natural grasp types from human ECoG. Neuroimage 59, 248–260 (2012)

    Article  Google Scholar 

  29. Boersma, P., Weenink, D.: Praat, a system for doing phonetics by computer (2001)

    Google Scholar 

  30. Ljung, L.: System identification: theory for the user. PTR Prentice Hall Information and System Sciences Series 198 (1987)

    Google Scholar 

  31. Kanas, V.G., Mporas, I., Benz, H.L., Sgarbas, K.N., Bezerianos, A., Crone, N.E.: Joint spatial-spectral feature space clustering for speech activity detection from ECoG signals. IEEE Transactions on Biomedical Engineering 61, 1241–1250 (2014)

    Article  Google Scholar 

  32. Canolty, R.T., Soltani, M., Dalal, S.S., Edwards, E., Dronkers, N.F., Nagarajan, S.S., et al.: Spatiotemporal dynamics of word processing in the human brain. Frontiers in neuroscience 1, 185 (2007)

    Article  Google Scholar 

  33. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Machine learning 6, 37–66 (1991)

    Google Scholar 

  34. Platt, J.: Fast training of support vector machines using sequential minimal optimization. Advances in kernel methods—support vector learning 3 (1999)

    Google Scholar 

  35. Kononenko, I.: Estimating attributes: analysis and extensions of RELIEF. In: Bergadano, F., De Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 171–182. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  36. Vigneau, M., Beaucousin, V., Herve, P.-Y., Duffau, H., Crivello, F., Houde, O., et al.: Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage 30, 1414–1432 (2006)

    Article  Google Scholar 

  37. Indefrey, P.: The spatial and temporal signatures of word production components: a critical update. Frontiers in psychology 2 (2011)

    Google Scholar 

  38. McGuire, P., Silbersweig, D., Frith, C.: Functional neuroanatomy of verbal self-monitoring. Brain 119, 907–917 (1996)

    Article  Google Scholar 

  39. Shergill, S.S., Brammer, M.J., Fukuda, R., Bullmore, E., Amaro, E., Murray, R.M., et al.: Modulation of activity in temporal cortex during generation of inner speech. Human brain mapping 16, 219–227 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasileios G. Kanas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kanas, V.G., Mporas, I., Milsap, G.W., Sgarbas, K.N., Crone, N.E., Bezerianos, A. (2015). Time-Varying Parametric Modeling of ECoG for Syllable Decoding. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds) Brain Informatics and Health. BIH 2015. Lecture Notes in Computer Science(), vol 9250. Springer, Cham. https://doi.org/10.1007/978-3-319-23344-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23344-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23343-7

  • Online ISBN: 978-3-319-23344-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics