Abstract
When it comes to textured object modelling, the standard practice is to use a multiple views approach. The numerous views allow reconstruction and provide robustness to viewpoint change but yield complex models. This paper shows that robustness with lighter models can be achieved through robust descriptors. A comparison between various descriptors allows choosing the one providing the best viewpoint robustness, in this case the ASIFT descriptor. Then, using this descriptor, the results show, for a wide variety of object shapes, that as few as seventeen views provide a high level of robustness to viewpoint change while being fast to process and having a small memory footprint. This work concludes advocating in favour of modelling methods using robust descriptors and a small number of views.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517. IEEE (2012)
Autodesk: 123d catch (2014). http://www.123dapp.com/catch (accessed: September 30, 2010)
Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)
Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(8), 1362–1376 (2010)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey vision conference, vol. 15, p. 50. Manchester, UK (1988)
Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2003)
Hartley, R.I., Sturm, P.: Triangulation. Computer Vision and Image Understanding 68(2), 146–157 (1997)
Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824. IEEE (2011)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)
Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(3), 448–461 (2010)
Pan, Q., Reitmayr, G., Drummond, T.: Proforma: probabilistic feature-based on-line rapid model acquisition. In: BMVC, pp. 1–11 (2009)
Papazov, Chavdar, Burschka, Darius: An efficient RANSAC for 3D object recognition in noisy and occluded scenes. In: Kimmel, Ron, Klette, Reinhard, Sugimoto, Akihiro (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 135–148. Springer, Heidelberg (2011)
Pollefeys, M., Koch, R., Vergauwen, M., Van Gool, L.: Flexible acquisition of 3d structure from motion. In: Proc. IEEE workshop on Image and Multidimensional Digital Signal Processing. Citeseer (1998)
Rosten, Edward, Drummond, Tom W.: Machine learning for high-speed corner detection. In: Leonardis, Aleš, Bischof, Horst, Pinz, Axel (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)
Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3d object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. International Journal of Computer Vision 66(3), 231–259 (2006)
Royer, E., Lhuillier, M., Dhome, M., Chateau, T.: Localization in urban environments: monocular vision compared to a differential gps sensor. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005, vol. 2, pp. 114–121. IEEE (2005)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)
Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision 80(2), 189–210 (2008)
Sturm, Peter: A historical survey of geometric computer vision. In: Real, Pedro, Diaz-Pernil, Daniel, Molina-Abril, Helena, Berciano, Ainhoa, Kropatsch, Walter (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 1–8. Springer, Heidelberg (2011)
Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D., Haussermann, K., Janssen, R., Montiel, J.M.M., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O., van de Molengraft, R.: Roboearth. IEEE Robotics Automation Magazine 18(2), 69–82 (2011)
Yu, G., Morel, J.M.: ASIFT: an algorithm for fully affine invariant comparison. Image Processing On Line 2011 (2011)
Zabih, R., Woodfill, J.: A non-parametric approach to visual correspondence. In: IEEE transactions on pattern analysis and machine intelligence. Citeseer (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Manfredi, G., Devy, M., Sidobre, D. (2015). Textured Object Recognition: Balancing Model Robustness and Complexity. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-319-23192-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23191-4
Online ISBN: 978-3-319-23192-1
eBook Packages: Computer ScienceComputer Science (R0)