Nothing Special   »   [go: up one dir, main page]

Skip to main content

Textured Object Recognition: Balancing Model Robustness and Complexity

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9256))

Included in the following conference series:

  • 3154 Accesses

Abstract

When it comes to textured object modelling, the standard practice is to use a multiple views approach. The numerous views allow reconstruction and provide robustness to viewpoint change but yield complex models. This paper shows that robustness with lighter models can be achieved through robust descriptors. A comparison between various descriptors allows choosing the one providing the best viewpoint robustness, in this case the ASIFT descriptor. Then, using this descriptor, the results show, for a wide variety of object shapes, that as few as seventeen views provide a high level of robustness to viewpoint change while being fast to process and having a small memory footprint. This work concludes advocating in favour of modelling methods using robust descriptors and a small number of views.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: fast retina keypoint. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517. IEEE (2012)

    Google Scholar 

  2. Autodesk: 123d catch (2014). http://www.123dapp.com/catch (accessed: September 30, 2010)

  3. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  4. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multiview stereopsis. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(8), 1362–1376 (2010)

    Article  Google Scholar 

  5. Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey vision conference, vol. 15, p. 50. Manchester, UK (1988)

    Google Scholar 

  6. Hartley, R., Zisserman, A.: Multiple view geometry in computer vision. Cambridge University Press (2003)

    Google Scholar 

  7. Hartley, R.I., Sturm, P.: Triangulation. Computer Vision and Image Understanding 68(2), 146–157 (1997)

    Article  Google Scholar 

  8. Lai, K., Bo, L., Ren, X., Fox, D.: A large-scale hierarchical multi-view rgb-d object dataset. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824. IEEE (2011)

    Google Scholar 

  9. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  10. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  11. Ozuysal, M., Calonder, M., Lepetit, V., Fua, P.: Fast keypoint recognition using random ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(3), 448–461 (2010)

    Article  Google Scholar 

  12. Pan, Q., Reitmayr, G., Drummond, T.: Proforma: probabilistic feature-based on-line rapid model acquisition. In: BMVC, pp. 1–11 (2009)

    Google Scholar 

  13. Papazov, Chavdar, Burschka, Darius: An efficient RANSAC for 3D object recognition in noisy and occluded scenes. In: Kimmel, Ron, Klette, Reinhard, Sugimoto, Akihiro (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 135–148. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Pollefeys, M., Koch, R., Vergauwen, M., Van Gool, L.: Flexible acquisition of 3d structure from motion. In: Proc. IEEE workshop on Image and Multidimensional Digital Signal Processing. Citeseer (1998)

    Google Scholar 

  15. Rosten, Edward, Drummond, Tom W.: Machine learning for high-speed corner detection. In: Leonardis, Aleš, Bischof, Horst, Pinz, Axel (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Rothganger, F., Lazebnik, S., Schmid, C., Ponce, J.: 3d object modeling and recognition using local affine-invariant image descriptors and multi-view spatial constraints. International Journal of Computer Vision 66(3), 231–259 (2006)

    Article  Google Scholar 

  17. Royer, E., Lhuillier, M., Dhome, M., Chateau, T.: Localization in urban environments: monocular vision compared to a differential gps sensor. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2005, vol. 2, pp. 114–121. IEEE (2005)

    Google Scholar 

  18. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571. IEEE (2011)

    Google Scholar 

  19. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision 80(2), 189–210 (2008)

    Article  Google Scholar 

  20. Sturm, Peter: A historical survey of geometric computer vision. In: Real, Pedro, Diaz-Pernil, Daniel, Molina-Abril, Helena, Berciano, Ainhoa, Kropatsch, Walter (eds.) CAIP 2011, Part I. LNCS, vol. 6854, pp. 1–8. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D., Haussermann, K., Janssen, R., Montiel, J.M.M., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O., van de Molengraft, R.: Roboearth. IEEE Robotics Automation Magazine 18(2), 69–82 (2011)

    Article  Google Scholar 

  22. Yu, G., Morel, J.M.: ASIFT: an algorithm for fully affine invariant comparison. Image Processing On Line 2011 (2011)

    Google Scholar 

  23. Zabih, R., Woodfill, J.: A non-parametric approach to visual correspondence. In: IEEE transactions on pattern analysis and machine intelligence. Citeseer (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Manfredi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Manfredi, G., Devy, M., Sidobre, D. (2015). Textured Object Recognition: Balancing Model Robustness and Complexity. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23192-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23191-4

  • Online ISBN: 978-3-319-23192-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics