Nothing Special   »   [go: up one dir, main page]

Skip to main content

Feature Evaluation with High-Resolution Images

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9256))

Included in the following conference series:

  • 3170 Accesses

Abstract

The extraction of scale invariant image features is a fundamental task for many computer vision applications. Features are localized in the scale space of the image. A descriptor is build for each feature which is used to determine the correspondence to a second feature, usually extracted from a second image. For the evaluation of detectors and descriptors, benchmark image sets are used. The benchmarks consist of image sequences and homographies which determine the ground truth for the mapping between the images. The repeatability criterion evaluates the detection accuracy of the detectors while precision and recall measure the quality of the descriptors.

Current data sets provide images with resolutions of less than one megapixel. A recent data set provides challenging images and highly accurate homographies. It allows for the evaluation at different image resolutions with the same scene content. Thus, the scale invariant properties of the extracted features can be examined. This paper presents a comprehensive evaluation of state of the art detectors and descriptors on this data set. The results show significant differences compared to the standard benchmark. Furthermore, it is shown that some detectors perform differently on different resolutions. It follows that high resolution images should be considered for future feature evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517 (2012)

    Google Scholar 

  2. Alcantarilla, P., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: British Machine Vision Conference (BMVC) (2013)

    Google Scholar 

  3. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. BloodAxe: OpenCV Features Comparison (2014). https://github.com/BloodAxe/OpenCV-Features-Comparison (Online; accessed February 20, 2015)

  5. Cordes, K., Rosenhahn, B., Ostermann, J.: Increasing the accuracy of feature evaluation benchmarks using differential evolution. In: IEEE Symposium Series on Computational Intelligence (SSCI) - IEEE Symposium on Differential Evolution (SDE) (2011)

    Google Scholar 

  6. Cordes, K., Rosenhahn, B., Ostermann, J.: High-Resolution feature evaluation benchmark. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part I. LNCS, vol. 8047, pp. 327–334. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Fan, B., Wu, F., Hu, Z.: Aggregating gradient distributions into intensity orders: A novel local image descriptor. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2377–2384 (2011)

    Google Scholar 

  8. Figat, J., Kornuta, T., Kasprzak, W.: Performance evaluation of binary descriptors of local features. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 187–194. Springer, Heidelberg (2014)

    Google Scholar 

  9. Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building Rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Hess, R.: An open-source siftlibrary. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 1493–1496. ACM, New York (2010)

    Google Scholar 

  11. Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary robust invariant scalable keypoints. In: IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555 (2011)

    Google Scholar 

  12. Li, Y., Wang, S., Tian, Q., Ding, X.: A survey of recent advances in visual feature detection. Neurocomputing 149(pt. B), 736–751 (2015)

    Google Scholar 

  13. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV) 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision (IJCV) 65(1–2), 43–72 (2005)

    Article  Google Scholar 

  15. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  16. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011)

    Google Scholar 

  17. Salti, S., Lanza, A., Di Stefano, L.: Keypoints from symmetries by wave propagation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2898–2905 (2013)

    Google Scholar 

  18. Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision (IJCV) 80, 189–210 (2008)

    Article  Google Scholar 

  19. Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: IEEE International Conference on Computer Vision (ICCV), pp. 603–610 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Cordes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cordes, K., Grundmann, L., Ostermann, J. (2015). Feature Evaluation with High-Resolution Images. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23192-1_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23191-4

  • Online ISBN: 978-3-319-23192-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics