Abstract
The extraction of scale invariant image features is a fundamental task for many computer vision applications. Features are localized in the scale space of the image. A descriptor is build for each feature which is used to determine the correspondence to a second feature, usually extracted from a second image. For the evaluation of detectors and descriptors, benchmark image sets are used. The benchmarks consist of image sequences and homographies which determine the ground truth for the mapping between the images. The repeatability criterion evaluates the detection accuracy of the detectors while precision and recall measure the quality of the descriptors.
Current data sets provide images with resolutions of less than one megapixel. A recent data set provides challenging images and highly accurate homographies. It allows for the evaluation at different image resolutions with the same scene content. Thus, the scale invariant properties of the extracted features can be examined. This paper presents a comprehensive evaluation of state of the art detectors and descriptors on this data set. The results show significant differences compared to the standard benchmark. Furthermore, it is shown that some detectors perform differently on different resolutions. It follows that high resolution images should be considered for future feature evaluations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alahi, A., Ortiz, R., Vandergheynst, P.: Freak: Fast retina keypoint. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 510–517 (2012)
Alcantarilla, P., Nuevo, J., Bartoli, A.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. In: British Machine Vision Conference (BMVC) (2013)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
BloodAxe: OpenCV Features Comparison (2014). https://github.com/BloodAxe/OpenCV-Features-Comparison (Online; accessed February 20, 2015)
Cordes, K., Rosenhahn, B., Ostermann, J.: Increasing the accuracy of feature evaluation benchmarks using differential evolution. In: IEEE Symposium Series on Computational Intelligence (SSCI) - IEEE Symposium on Differential Evolution (SDE) (2011)
Cordes, K., Rosenhahn, B., Ostermann, J.: High-Resolution feature evaluation benchmark. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part I. LNCS, vol. 8047, pp. 327–334. Springer, Heidelberg (2013)
Fan, B., Wu, F., Hu, Z.: Aggregating gradient distributions into intensity orders: A novel local image descriptor. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2377–2384 (2011)
Figat, J., Kornuta, T., Kasprzak, W.: Performance evaluation of binary descriptors of local features. In: Chmielewski, L.J., Kozera, R., Shin, B.-S., Wojciechowski, K. (eds.) ICCVG 2014. LNCS, vol. 8671, pp. 187–194. Springer, Heidelberg (2014)
Frahm, J.-M., Fite-Georgel, P., Gallup, D., Johnson, T., Raguram, R., Wu, C., Jen, Y.-H., Dunn, E., Clipp, B., Lazebnik, S., Pollefeys, M.: Building Rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010)
Hess, R.: An open-source siftlibrary. In: Proceedings of the International Conference on Multimedia, MM 2010, pp. 1493–1496. ACM, New York (2010)
Leutenegger, S., Chli, M., Siegwart, R.: BRISK: Binary robust invariant scalable keypoints. In: IEEE International Conference on Computer Vision (ICCV), pp. 2548–2555 (2011)
Li, Y., Wang, S., Tian, Q., Ding, X.: A survey of recent advances in visual feature detection. Neurocomputing 149(pt. B), 736–751 (2015)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision (IJCV) 60(2), 91–110 (2004)
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Gool, L.V.: A comparison of affine region detectors. International Journal of Computer Vision (IJCV) 65(1–2), 43–72 (2005)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 27(10), 1615–1630 (2005)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: An efficient alternative to sift or surf. In: IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011)
Salti, S., Lanza, A., Di Stefano, L.: Keypoints from symmetries by wave propagation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2898–2905 (2013)
Snavely, N., Seitz, S.M., Szeliski, R.: Modeling the world from internet photo collections. International Journal of Computer Vision (IJCV) 80, 189–210 (2008)
Wang, Z., Fan, B., Wu, F.: Local intensity order pattern for feature description. In: IEEE International Conference on Computer Vision (ICCV), pp. 603–610 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Cordes, K., Grundmann, L., Ostermann, J. (2015). Feature Evaluation with High-Resolution Images. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-23192-1_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23191-4
Online ISBN: 978-3-319-23192-1
eBook Packages: Computer ScienceComputer Science (R0)