Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multimodal Output Combination for Transcribing Historical Handwritten Documents

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9256))

Included in the following conference series:

  • 3139 Accesses

Abstract

Transcription of digitalised historical documents is an interesting task in the document analysis area. This transcription can be achieved by using Handwritten Text Recognition (HTR) on digitalised pages or by using Automatic Speech Recognition (ASR) on the dictation of contents. Moreover, another option is using both systems in a multimodal combination to obtain a draft transcription, given that combining the outputs of different recognition systems will generally improve the recognition accuracy. In this work, we present a new combination method based on Confusion Network. We check its effectiveness for transcribing a Spanish historical book. Results on both unimodal combination with different optical (for HTR) and acoustic (for ASR) models, and multimodal combination, show a relative reduction of Word and Character Error Rate of \(14.3\%\) and \(16.6\%\), respectively, over the HTR baseline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alabau, V., Martínez-Hinarejos, C.D., Romero, V., Lagarda, A.L.: An iterative multimodal framework for the transcription of handwritten historical documents. Pattern Recognition Letters 35, 195–203 (2014)

    Article  Google Scholar 

  2. Bertolami, R., Halter, B., Bunke, H.: Combination of multiple handwritten text line recognition systems with a recursive approach. In: Proc. Int. Conf. Frontiers Handwriting Recognition, pp. 61–65 (2006)

    Google Scholar 

  3. Bisani, M., Ney, H.: Bootstrap estimates for confidence intervals in ASR performance evaluation. In: Proc. of Int. Conf. on Acoustics, Speech and Signal Processing, vol. 1, pp. 409–412 (2004)

    Google Scholar 

  4. Collobert, R., Bengio, S., Mariéthoz, J.: Torch: a modular machine learning software library. Tech. rep., IDIAP-RR 02–46, IDIAP (2002)

    Google Scholar 

  5. Dreuw, P., Jonas, S., Ney, H.: White-space models for offline Arabic handwriting recognition. In: Proc. of Int. Conf. on Pattern Recognition, pp. 1–4 (2008)

    Google Scholar 

  6. Hermansky, H., Ellis, D.P., Sharma, S.: Tandem connectionist feature extraction for conventional HMM systems. In: Proc. of Int. Conf. Acoustics, Speech and Signal Processing, vol. 3, pp. 1635–1638 (2000)

    Google Scholar 

  7. Ishimaru, S., Nishizaki, H., Sekiguchi, Y.: Effect of confusion network combination on speech recognition system for editing. In: Proc. of APSIPA Annual Summit and Conf., vol. 4, pp. 1–4 (2011)

    Google Scholar 

  8. Johnson, D.: ICSI Quicknet soft package (2004). http://www1.icsi.berkeley.edu/Speech/qn.html

  9. Kneser, R., Ney, H.: Improved backing-off for m-gram language modeling. In: Proc. of Int. Conf. Acoustics, Speech and Signal Processing, vol. 1, pp. 181–184 (1995)

    Google Scholar 

  10. Krishnamurthy, H.K.: Study of algorithms to combine multiple automatic speech recognition (ASR) system outputs. Master’s thesis, Department of Electrical and Computer Engineering (2009). http://hdl.handle.net/2047/d10019273

  11. Luján-Mares, M., Tamarit, V., Alabau, V., Martínez-Hinarejos, C.D., Pastor i Gadea, M., Sanchis, A., Toselli, A.H.: iATROS: a speech and handwritting recognition system. In: V Jornadas en Tecnologías del Habla (VJTH2008), pp. 75–78 (2008)

    Google Scholar 

  12. Moreno, A., Poch, D., Bonafonte, A., Lleida, E., Llisterri, J., Mariño, J.B., Nadeu, C.: Albayzin speech database: design of the phonetic corpus. In: Proc. of EuroSpeech 1993, pp. 175–178 (1993)

    Google Scholar 

  13. Netpbm home page. http://netpbm.sourceforge.net/

  14. Plamondon, R., Srihari, S.N.: On-Line and Off-Line Handwriting Recognition: A Comprehensive Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 63–84 (2000)

    Article  Google Scholar 

  15. Romero, V., Leiva, L.A., Toselli, A.H., Vidal, E.: Interactive multimodal transcription of text images using a web-based demo system. In: Proc. of Conf. on Intelligent User Interfaces, pp. 477–478 (2009)

    Google Scholar 

  16. Serrano, N., Castro, F., Juan, A.: The RODRIGO Database. In: Proc. of Language Resources and Evaluation Conference, pp. 2709–2712 (2010)

    Google Scholar 

  17. Stolcke, A.: SRILM - an extensible language modeling toolkit. In: Proc. Interspeech, pp. 901–904 (2002)

    Google Scholar 

  18. Woodruff, P., Dupont, S.: Bimodal combination of speech and handwriting for improved word recognition. In: Proc. of EUSIPCO 2005, pp. 1918–1921 (2005)

    Google Scholar 

  19. Xue, J., Zhao, Y.: Improved confusion network algorithm and shortest path search from word lattice. In: Proc. of Int. Conf. in Acoustics, Speech and Signal Processing, vol. 1, pp. 853–856 (2005)

    Google Scholar 

  20. Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., et al.: The HTK book (for HTK version 3.4). Cambridge university Eng. Dept. (2006)

    Google Scholar 

  21. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to information retrieval. Transactions on Information Systems 22(2), 179–214 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Granell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Granell, E., Martínez-Hinarejos, CD. (2015). Multimodal Output Combination for Transcribing Historical Handwritten Documents. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23192-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23191-4

  • Online ISBN: 978-3-319-23192-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics