Abstract
The purpose of this paper is twofold. First, we develop a quadratic tracker which computes a locally quadratic optical flow field by solving a model-fitting problem for each point in its local neighbourhood. This local method allows us to select a region of interest for the optical flow computation. Secondly, we propose a method to compute the transportation of a motion field in long-time image sequences using the Wasserstein distance for cyclic distributions. This measure evaluates the motion coherency in an image sequence and detects collapses of smoothness of the motion vector field in an image sequence.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–204 (1981)
Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications to image databases. In: Proceedings of ICCV 1998, pp. 59–66 (1998)
Fisher, N.I.: Statistical Analysis of Circular Data. Cambridge University Press (1993)
Wedel, A., Cremers, D.: Stereo Scene Flow for 3D Motion Analysis. Springer (2011)
Vogel, Ch., Schindler, K., Roth, S.L.: Piecewise rigid scene flow. In: Proceedings of ICCV 2013, pp. 1377–1384 (2013)
Vogel, Ch., Schindler, K., Roth, S.: 3D scene flow estimation with a rigid motion prior. In: Proceedings of ICCV 2011, pp. 1291–1298 (2011)
Rabin, J., Delon, J., Gousseau, Y.: Transportation distances on the circle. JMIV 41, 147–167 (2011)
Hwang, S.-H., Lee, U.-K.: A hierarchical optical flow estimation algorithm based on the interlevel motion smoothness constraint. Pattern Recognition 26, 939–952 (1993)
Amiaz, T., Lubetzky, E., Kiryati, N.: Coarse to over-fine optical flow estimation. Pattern Recognition 40, 2496–2503 (2007)
Villani, C.: Optimal Transport, Old and New. Springer (2009)
Baker, S., Matthews, I.: Lucas-Kanade 20 years On: A unifying framework. IJCV 56, 221–255 (2004)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of IJCAI 1981, pp. 674–679 (1981)
Shi, J., Tomasi, C.: Good features to track. In: Proceedings of CVPR 1994, pp. 593–600 (1994)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of CVPR 2005 (2005)
Ustundag, B.C., Unel, M.: Human action recognition using histograms of oriented optical flows from depth. In: Bebis, G., et al. (eds.) ISVC 2014, Part I. LNCS, vol. 8887, pp. 629–638. Springer, Heidelberg (2014)
Chaudhry, R., Ravichandran, A., Hager, G.D., Vidal, R.: Histograms of oriented optical flow and binet-cauchy kernels on nonlinear dynamical systems for the recognition of human actions. In: Proceedings of CVPR 2009, pp. 1932–1939 (2009)
Mileva, Y., Bruhn, A., Weickert, J.: Illumination-robust variational optical flow with photometric invariants. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 152–162. Springer, Heidelberg (2007)
Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: Combining local and global optic flow methods. IJCV 61, 211–231 (2005)
Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV-\(L^1\). In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)
Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. IJCV 67, 141–158 (2006)
Shin, Y.-Y., Chang, O.-S., Xu, J.: Convergence of fixed point iteration for deblurring and denoising problem. Applied Mathematics and Computation 189, 1178–1185 (2007)
Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20, 89–97 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Kato, T., Itoh, H., Imiya, A. (2015). Optical Flow Computation with Locally Quadratic Assumption. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_19
Download citation
DOI: https://doi.org/10.1007/978-3-319-23192-1_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23191-4
Online ISBN: 978-3-319-23192-1
eBook Packages: Computer ScienceComputer Science (R0)