Abstract
Image representation is an important process in image classification, and there are many different methods for representing images. HOG (Histograms of Oriented Gradients) is a popular one which has been used in many applications including face recognition, pedestrian detection and palmprint recognition. In this paper, a novel method is presented to improve HOG-based image classification by using the multiscale features of images. For each image, multiple HOG feature vectors are extracted under different spatial dimensions (or ’scales’). These ’multiscale’ feature vectors are then fused into a distance function to calculate the distance between two images. Experiments have been conducted on ORL face database, AR face database and FERET face database. Results show the use of multiscale HOG features has led to significant improvement in performance over the use of single scale HOG features. Results also show that the nearest neighbour classifier equipped with our distance function is comparable to the well-known and widely-used benchmark classifier.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
Ahmad, M.I., Ilyas, M.Z., Md Isa, M.N., Ngadiran, R., Darsono, A.M.: Information fusion of face and palmprint multimodal biometrics. In: 2014 IEEE Region 10 Symposium, pp. 635–639. IEEE (2014)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(7), 711–720 (1997)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)
Dang, L., Bui, B., Vo, P.D., Tran, T.N., Le, B.H.: Improved hog descriptors. In: 2011 Third International Conference on Knowledge and Systems Engineering (KSE), pp. 186–189. IEEE (2011)
Déniz, O., Bueno, G., Salido, J., De la Torre, F.: Face recognition using histograms of oriented gradients. Pattern Recognition Letters 32(12), 1598–1603 (2011)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1627–1645 (2010)
Gao, Z., Ding, L., Xiong, C., Huang, B.: A robust face recognition method using multiple features fusion and linear regression. Wuhan University Journal of Natural Sciences 19(4), 323–327 (2014)
Hou, C., Ai, H., Lao, S.: Multiview Pedestrian Detection Based on Vector Boosting. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007, Part I. LNCS, vol. 4843, pp. 210–219. Springer, Heidelberg (2007)
Huang, Z.-H., Li, W.-J., Wang, J., Zhang, T.: Face recognition based on pixel-level and feature-level fusion of the top-levels wavelet sub-bands. Information Fusion 22, 95–104 (2015)
Jia, W., Rong-Xiang, H., Lei, Y.-K., Zhao, Y., Gui, J.: Histogram of oriented lines for palmprint recognition. IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(3), 385–395 (2014)
Liu, C., Wechsler, H.: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Transactions on Image Processing 11(4), 467–476 (2002)
David, G.: Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)
Martinez, A., Benavente, R.: The AR Face Database. CVC Tech. Report 24, Report 24, (1998)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image and Vision Computing 22(10), 761–767 (2004)
Nikan, S., Ahmadi, M.: Local gradient-based illumination invariant face recognition using local phase quantisation and multi-resolution local binary pattern fusion. IET Image Processing 9(1), 12–21 (2014)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)
Jonathon Phillips, P., Moon, H., Rizvi, S.A., Rauss, P.J.: The feret evaluation methodology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(10), 1090–1104 (2000)
Pong, K.-H., Lam, K.-M.: Multi-resolution feature fusion for face recognition. Pattern Recognition 47(2), 556–567 (2014)
Satpathy, A., Jiang, X., Eng, H.-L.: Human detection by quadratic classification on subspace of extended histogram of gradients. IEEE Transactions on Image Processing 23(1), 287–297 (2014)
Swets, D.L., Weng, J.J.: Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis & Machine Intelligence 8, 831–836 (1996)
Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 1991, pp. 586–591. IEEE (1991)
Watanabe, T., Ito, S., Yokoi, K.: Co-occurrence histograms of oriented gradients for human detection. IPSJ Transactions on Computer Vision and Applications 2, 39–47 (2010)
Wei, X., Wang, H., Guo, G., Wan, H.: A General Weighted Multi-scale Method for Improving LBP for Face Recognition. In: Hervás, R., Lee, S., Nugent, C., Bravo, J. (eds.) UCAmI 2014. LNCS, vol. 8867, pp. 532–539. Springer, Heidelberg (2014)
Yang, J., Zhang, D., Frangi, A.F., Yang, J.-Y.: Two-dimensional pca: a new approach to appearance-based face representation and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(1), 131–137 (2004)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Wei, X., Guo, G., Wang, H., Wan, H. (2015). A Multiscale Method for HOG-Based Face Recognition. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2015. Lecture Notes in Computer Science(), vol 9244. Springer, Cham. https://doi.org/10.1007/978-3-319-22879-2_49
Download citation
DOI: https://doi.org/10.1007/978-3-319-22879-2_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22878-5
Online ISBN: 978-3-319-22879-2
eBook Packages: Computer ScienceComputer Science (R0)