Abstract
In the current era of big data, high volumes of valuable data can be easily collected and generated. Social networks are examples of generating sources of these big data. Users (or social entities) in these social networks are often linked by some interdependency such as friendship or “following” relationships. As these big social networks keep growing, there are situations in which individual users or businesses want to find those frequently followed groups of social entities so that they can follow the same groups. In this paper, we present a big data analytics solution that uses the MapReduce model to mine social networks for discovering groups of frequently followed social entities. Evaluation results show the efficiency and practicality of our big data analytics solution in discovering “following” patterns from social networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cuzzocrea, A., Leung, C.K.-S., MacKinnon, R.K.: Mining constrained frequent itemsets from distributed uncertain data. Future Gener. Comput. Syst. 37, 117–126 (2014)
Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)
Dhahri, N., Trabelsi, C., Ben Yahia, S.: RssE-Miner: a new approach for efficient events mining from social media RSS feeds. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 253–264. Springer, Heidelberg (2012)
Jiang, F., Leung, C.K.-S.: Mining interesting “Following” patterns from social networks. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 308–319. Springer, Heidelberg (2014)
Jiang, F., Leung, C.K.-S.: Stream mining of frequent patterns from delayed batches of uncertain data. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 209–221. Springer, Heidelberg (2013)
Jiang, F., Leung, C.K.-S., Liu, D., Peddle, A.M.: Discovery of really popular friends from social networks. In: IEEE BDCloud 2014, pp. 342–349. IEEE, Los Alamitos (2014)
Kang, Y., Yu, B., Wang, W., Meng, D.: Spectral Clustering for Large-Scale Social Networks via a Pre-Coarsening Sampling based Nyström Method. In: Cao, T., Lim, E.-P., Zhou, Z.-H., Ho, T.-B., Cheung, D., Motoda, H. (eds.) PAKDD 2015, Part II. LNCS (LNAI), vol. 9078, pp. 106–118. Springer, Heidelberg (2015)
Leung, C.K.-S., Cuzzocrea, A., Jiang, F.: Discovering frequent patterns from uncertain data streams with time-fading and landmark models. LNCS TLDKS 8, 174–196 (2013)
Leung, C.K.-S., MacKinnon, R.K.: BLIMP: a compact tree structure for uncertain frequent pattern mining. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 115–123. Springer, Heidelberg (2014)
Leung, C.K.-S., MacKinnon, R.K., Tanbeer, S.K.: Fast algorithms for frequent itemset mining from uncertain data. In: Kumar, R., Toivonen, H., Pei, J., Huang, J.Z., Wu, X. (eds.) IEEE ICDM 2014, pp. 893–898. IEEE, Los Alamitos (2014)
Leung, C.K.-S., Tanbeer, S.K.: Mining popular patterns from transactional databases. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 291–302. Springer, Heidelberg (2012)
Leung, C.K.-S., Tanbeer, S.K., Cameron, J.J.: Interactive discovery of influential friends from social networks. Soc. Netw. Anal. Min. 4(1), Article 154 (2014)
Ma, L., Huang, H., He, Q., Chiew, K., Wu, J., Che, Y.: GMAC: a seed-insensitive approach to local community detection. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 297–308. Springer, Heidelberg (2013)
Madden, S.: From databases to big data. IEEE Internet Comput. 16(3), 4–6 (2012)
Mumu, T.S., Ezeife, C.I.: Discovering community preference influence network by social network opinion posts Mining. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2014. LNCS, vol. 8646, pp. 136–145. Springer, Heidelberg (2014)
Rader, E., Gray, R.: Understanding user beliefs about algorithmic curation in the facebook news feed. In: Begole, B., Kim, J., Inkpen, K., Woo, W. (eds.) ACM CHI 2015, pp. 173–182. ACM, New York (2015)
Rajadesingan, A., Zafarani, R., Liu, H.: Sarcasm detection on Twitter: a behavioral modeling approach. In: Cheng, X., Li, H., Gabrilovich, E., Tang, J. (eds.) ACM WSDM 2015, pp. 97–106. ACM, New York (2015)
Tanbeer, S.K., Leung, C.K.-S., Cameron, J.J.: Interactive mining of strong friends from social networks and its applications in e-commerce. J. Organ. Comput. Electron. Commer. 24(2–3), 157–173 (2014)
Wei, E.H.-C., Koh, Y.S., Dobbie, G.: Finding maximal overlapping communities. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 309–316. Springer, Heidelberg (2013)
Yu, W., Coenen, F., Zito, M., El Salhi, S.: Minimal vertex unique labelled subgraph mining. In: Bellatreche, L., Mohania, M.K. (eds.) DaWaK 2013. LNCS, vol. 8057, pp. 317–326. Springer, Heidelberg (2013)
Acknowledgement
This project is partially supported by NSERC (Canada) and University of Manitoba.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Leung, C.KS., Jiang, F. (2015). Big Data Analytics of Social Networks for the Discovery of “Following” Patterns. In: Madria, S., Hara, T. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2015. Lecture Notes in Computer Science(), vol 9263. Springer, Cham. https://doi.org/10.1007/978-3-319-22729-0_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-22729-0_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22728-3
Online ISBN: 978-3-319-22729-0
eBook Packages: Computer ScienceComputer Science (R0)