Nothing Special   »   [go: up one dir, main page]

Skip to main content

A MAP-Based Order Estimation Procedure for Sparse Channel Estimation

  • Conference paper
  • First Online:
Latent Variable Analysis and Signal Separation (LVA/ICA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9237))

Abstract

Recently, there has been a growing interest in estimation of sparse channels as they are observed in underwater acoustic and ultrawideband channels. In this paper we present a new Bayesian sparse channel estimation (SCE) algorithm that, unlike traditional SCE methods, exploits noise statistical information to improve the estimates. The proposed method uses approximate maximum a posteriori probability (MAP) to detect the non-zero channel tap locations while least square estimation is used to determine the values of the channel taps. Computer simulations shows that the proposed algorithm outperforms the existing algorithms in terms of normalized mean squared error (NMSE) and approaches Cramér-Rao lower bound of the estimation. In addition, it has low computational cost when compared to the other algorithms.

C. Jutten—This work has been partly funded by ERC project 2012-ERC-AdG-320684 CHESS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Non-zero channel tap locations.

  2. 2.

    A justification of (4) for Gaussian channels is given in [11].

  3. 3.

    Tolerance limits are the bounds that the probability of random variable occurrence outside them is a certain value.

References

  1. Kilfoyle, D.B., Baggeroer, A.B.: The state of the art in underwater acoustic telemetry. IEEE J. Oceanic Eng. 25(1), 4–27 (2000)

    Article  Google Scholar 

  2. Molisch, A.F.: Ultrawideband propagation channels-theory, measurement, and modeling. IEEE Trans. Veh. Technol. 54(5), 1528–1545 (2005)

    Article  Google Scholar 

  3. Claerbout, J.F., Muir, F.: Robust modeling with erratic data. Geophysics 38(5), 826–844 (1973)

    Article  Google Scholar 

  4. Carbonelli, C., Vedantam, S., Mitra, U.: Sparse channel estimation with zero tap detection. IEEE Trans. Wirel. Commun. 6(5), 1743–1763 (2007)

    Article  Google Scholar 

  5. Niazadeh, R., Babaie-Zadeh, M., Jutten, C.: An alternating minimization method for sparse channel estimation. In: Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R., Vincent, E. (eds.) LVA/ICA 2010. LNCS, vol. 6365, pp. 319–327. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Subramanian, S.: Compressed sensing for sparse underwater channel estimation: Some practical considerations (2010). arXiv preprint arXiv:1002.2677

  7. Sharp, M., Scaglione, A.: Estimation of sparse multipath channels. In: Military Communications Conference, MILCOM, pp. 1–7. IEEE (2008)

    Google Scholar 

  8. Cotter, S.F., Rao, B.D.: Sparse channel estimation via matching pursuit with application to equalization. IEEE Trans. Commun. 50(3), 374–377 (2002)

    Article  Google Scholar 

  9. Karabulut, G.Z., Yongacoglu, A.: Sparse channel estimation using orthogonal matching pursuit algorithm. In: Vehicular Technology Conference, VTC, vol. 6, pp. 3880–3884. IEEE (2004)

    Google Scholar 

  10. Wan, F., Mitra, U., Molisch, A.: The modified iterative detector/estimator algorithm for sparse channel estimation. In: OCEANS, pp. 1–6. IEEE (2010)

    Google Scholar 

  11. Masood, M., Al-Naffouri, T.Y.: Sparse reconstruction using distribution agnostic Bayesian matching pursuit. IEEE Trans. Sig. Process. 61(21), 5298–5309 (2013)

    Article  Google Scholar 

  12. Rao, C.R., Toutenburg, H., Shalabh, H.C., Schomaker, M.: Linear Models and Generalizations: Least Squares and Alternatives, 3rd edn. Springer, Heidelberg (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Daei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Daei, S., Babaie-Zadeh, M., Jutten, C. (2015). A MAP-Based Order Estimation Procedure for Sparse Channel Estimation. In: Vincent, E., Yeredor, A., Koldovský, Z., Tichavský, P. (eds) Latent Variable Analysis and Signal Separation. LVA/ICA 2015. Lecture Notes in Computer Science(), vol 9237. Springer, Cham. https://doi.org/10.1007/978-3-319-22482-4_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22482-4_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22481-7

  • Online ISBN: 978-3-319-22482-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics