Nothing Special   »   [go: up one dir, main page]

Skip to main content

An Image Enhancement Method Based on Edge Preserving Random Walk Filter

  • Conference paper
  • First Online:
Intelligent Computing Theories and Methodologies (ICIC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9225))

Included in the following conference series:

Abstract

Some previous edge preserving smoothing methods suffer from halo artifacts when they are applied for image enhancement. In this paper, an edge preserving random walk filter is proposed, our method suffers free from artifacts. Unlike previous methods, the proposed method is able to obtain a smoothing result by just solving a system of linear equation. The proposed filter is then adopted to design an image enhancement algorithm. By just amplifying and adding the detail layer to the base layer, the algorithm can produce a satisfactory result. The simulation results demonstrate that our approach performs much better than other existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  MATH  Google Scholar 

  2. Black, M.J., Sapiro, G., Marimont, D.H., Heeger, D.: Robust anisotropic diffusion. IEEE Trans. Image Process. 7(3), 421–432 (1998)

    Article  Google Scholar 

  3. Lopez-Molina, C., Galar, M., Bustince, H., De Baets, B.: On the impact of anisotropic diffusion on edge detection. Pattern Recogn. 47(1), 270–281 (2014)

    Article  Google Scholar 

  4. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  5. Chan, T., Esedoglu, S., Park, F., et al.: Recent developments in total variation image restoration. Math. Models Comput Vis. 24(8), 19–22 (2005)

    Google Scholar 

  6. Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Trans. Image. Process. 11(10), 1141–1151 (2002)

    Article  MathSciNet  Google Scholar 

  7. Sanun, S.: Bilateral filtering as a tool for image smoothing with edge preserving properties.In: 2014 IEEE International Conference on Electrical Engineering Congress (iEECON) (2014)

    Google Scholar 

  8. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27(3), 1 (2008)

    Article  Google Scholar 

  9. Min, D., Choi, S., Lu, J., Ham, B., Sohn, K., Do, M.: Fast global image smoothing based on weighted least squares. IEEE Trans. Image Process. 7149(c), 1–15 (2014)

    MathSciNet  Google Scholar 

  10. Xu, L., Lu, C., Xu, Y., Jia, J.: Image smoothing via L0 gradient minimization. In: Proceedings of 2011 SIGGRAPH Asia Conference- SA 2011, 30(60), 1 (2011)

    Google Scholar 

  11. Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposition based on local extrema. ACM Trans. Graph. (TOG) 28(5), 147 (2009)

    Article  Google Scholar 

  12. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  13. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28, 1768–1783 (2006)

    Article  Google Scholar 

  14. Grady, L., Funka-Lea, G.: Multi-label image segmentation for medical applications based on graph-theoretic electrical potentials. In: Sonka, M., Kakadiaris, I.A., Kybic, J. (eds.) CVAMIA/MMBIA 2004. LNCS, vol. 3117, pp. 230–245. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  15. Dodziuk, J.: Difference equations, isoperimetric inequality and transience of certain random walks. Trans. Am. Math. Soc. 284(2), 787 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luxburg, U.: A tutorial on spectral clustering. Stat. Comput 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  17. Biggs, N.: Algebraic potential theory on graphs. Bull. London Math. Soc. 29, 641–682 (1997)

    Article  MathSciNet  Google Scholar 

  18. Hazra, S.B.: Introduction. In: Hazra, S.B. (ed.) Large-Scale PDE-Constrained Optimization in Applications. LNACM, vol. 49, pp. 1–4. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Falgout, R.D.: An introduction to algebraic multigrid computing. Comput. Sci Eng. 8(6), 24–33 (2006)

    Article  Google Scholar 

  20. Saad, Y.: Iterative methods for sparse linear systems. IEEE Comput. Sci. Eng. 3, 88–90 (1996)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank L. Grady for providing the source code of the original random walks algorithm. The authors would also like to thank the reviewers for their valuable comments. This work was jointly supported by National Science Foundation of China (Grant No. 61201421), China Postdoctoral Science Foundation (Grant No. 2013M532097), Fundamental Research Funds for the Central Universities (lzujbky-2014-52 & lzujbky-2015-197), and Science Foundation of Gansu Province of China (Grant No. 1208RJYA058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaobin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Z., Wang, H., Sun, X., Zheng, X. (2015). An Image Enhancement Method Based on Edge Preserving Random Walk Filter. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in Computer Science(), vol 9225. Springer, Cham. https://doi.org/10.1007/978-3-319-22180-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22180-9_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22179-3

  • Online ISBN: 978-3-319-22180-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics