Abstract
Sparse representation has been widely applied to pattern classification in recent years. In the framework of sparse representation based classification (SRC), the test sample is represented as a sparse linear combination of the training samples. Due to the epileptic EEG signals are non-stationary and transitory, wavelet transform as a time-frequency analysis method is widely used to analyze EEG signals. In this work, a novel EEG signal classification method based on sparse representation and wavelet transform was proposed to detect the epileptic EEG from EEG recordings. The frequency subbands decomposed by wavelet transform provided more information than the entire EEG. The experimental results showed that the proposed method could classify the ictal EEG and interictal EEG with accuracy of 98 %.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Iasemidis, L.D.: Epileptic seizure prediction and control. IEEE Trans. Biomed. Eng. 50(5), 549–558 (2003)
Khan, Y.U., Gotman, J.: Wavelet based automatic seizure detection in intracerebral electroencephalogram. Clin. Neurophysiol. 114(5), 898–908 (2003)
Saab, M.E., Gotman, J.: A system to detect the onset of epileptic seizure in scalp EEG. Clin. Europhysiol. 116(2), 427–442 (2005)
Subasi, A.: EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. 32(4), 1084–1093 (2007)
Adeli, H., Zhou, Z., Dadmehr, N.: Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123, 69–87 (2003)
Adeli, H., Ghosh, D.S., Dadmehr, N.: A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Trans. Biomed. Eng. 54(2), 205–211 (2007)
Altunaya, S., Telatarb, Z., Erogulc, O.: Epileptic EEG detection using the linear prediction error energy. Expert Syst. Appl. 37(8), 5661–5665 (2010)
Wang, X.Y., Meng, J., Qiu, T.S.: Research on chaotic behavior of epilepsy electroencephalogram of ehildren based on independent component analysis algorithm. J. Biomed. Engin. 24, 835–841 (2007)
Swiderski, B., Osowski, S., Rysz, A.: Lyapunov exponent of EEG signal for epileptic seizure characterization. Chaos. 5, 82–87 (1995)
Hasan, O.: Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Syst. Appl. 36, 2027–2036 (2009)
Achary, U.R., Molinari, F., Sree, S.V., Chattopadhyay, S., Ng, K.H., Suri, J.S.: Automated diagnosis of epileptic eeg using entropies. Biomed. Signal Process. Control 7, 401–408 (2012)
Meng, Q., Chen, S., Zhou, W., Yang, X.: Seizure detection in clinical EEG based on entropies and EMD. In: Guo, C., Hou, Z.-G., Zeng, Z. (eds.) ISNN 2013, Part II. LNCS, vol. 7952, pp. 323–330. Springer, Heidelberg (2013)
Thomasson, N., Hoeppner, T.J., Webber, C.L., Zbilut, J.P.: Recurrence quantification in epileptic EEGs. Phys. Lett. A 279, 94–101 (2001)
Acharya, U.R., Sree, S.V., Chattopadhyay, S., Yu, W.W., Alvin, P.C.: Application of recurrence quantification analysis for the automatic EEG signals. Int. J. Neural Syst. 21, 199–211 (2011)
Acharya, U.R., Sree, S.V., Suri, J.S.: Automatic detection of epileptic EEG signals using higher order cumulant features. Int. J. Neural Syst. 21(5), 403–414 (2011)
Guo, L., Rivero, D., Seoane, J., Pazos, A.: Classification of EEG signals using relative wavelet energy and artificial neural networks. In: The First ACM/SIGEVO Summit on Genetic and Evolutionary Computation, pp. 177–183 (2009)
Zhao, J.L., Zhou, W.D., Liu, K., Cai, D.M.: EEG signal classification based on SVM and wavelet analysis. Comput. Appl. Softw. 28, 114–116 (2011)
Clodoaldo, A., Lima, M., André, L.V., Coelho, S.C.: Automatic EEG signal classification for epilepsy diagnosis with relevance vector machines. Expert Syst. Appl. 36, 10054–10059 (2009)
Yuan, Q., Zhou, W.D., Li, S.F., Cai, D.M.: Epileptic EEG classification based on extreme learning machine and nonlinear features. Epilepsy Res. 96, 29–38 (2011)
Candes, E., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59(8), 1207–1223 (2006)
Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)
Yang, M., Zhang, L., Feng, X.C., Zhang, D.: Fisher discrimination dictionary learning for sparse representation. In: Proceedings of the 13th IEEE International Conference on Computer Vision (ICCV), pp. 543–550 (2011)
Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw patches. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition. (2008)
Ren, Y.F., Wu, Y., Ge, Y.B.: A cotraining algorithm for EEG classification with biomimetic pattern recognition and sparse representation. Neurocomputing. 137, 212–222 (2014)
Wu, M., Wei, Z.H., Tang, L.M., Sun, Y.B., Xiao, L.: The reconstruction study of EEG signal based on sparse approximation and compressive sensing. Chinese J. Medi. Instrumentation. 34(4), 241–245 (2010)
Faust, O., Acharya, U.R., Adeli, H., Adeli, A.: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis. SEIZURE: european. J. Epilepsy (2015). doi:10.1016/j.seizure.2015.01.012
Majumdar, K.K., Vardhan, P.: Automatic seizure detection in ECoG by differential operator and windowed variance. IEEE Trans. Neural Syst. Rehabil. Eng. 19(4), 356–365 (2011)
Ubeyli, E.D.: Combined neural network model employing wavelet coefficients for EEG signals classification. Digit. Sig. Proc. 19(2), 297–308 (2009)
Acknowledgement
This work was supported by the National Natural Science Foundation of China (Grant No. 61201428, 61302090), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2010FQ020, ZR2013FL002), the Shandong Distinguished Middle-aged and Young Scientist Encourage and Reward Foundation, China (Grant No. BS2009SW003, BS2014DX015), the Graduate Innovation Foundation of University of Jinan (Grant No. YCX13011).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Chen, S., Meng, Q., Chen, Y., Wang, D. (2015). Automatic Seizure Detection in EEG Based on Sparse Representation and Wavelet Transform. In: Huang, DS., Bevilacqua, V., Premaratne, P. (eds) Intelligent Computing Theories and Methodologies. ICIC 2015. Lecture Notes in Computer Science(), vol 9225. Springer, Cham. https://doi.org/10.1007/978-3-319-22180-9_20
Download citation
DOI: https://doi.org/10.1007/978-3-319-22180-9_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22179-3
Online ISBN: 978-3-319-22180-9
eBook Packages: Computer ScienceComputer Science (R0)