Nothing Special   »   [go: up one dir, main page]

Skip to main content

Stabbing Segments with Rectilinear Objects

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9210))

Included in the following conference series:

Abstract

We consider stabbing regions for a set S of n line segments in the plane, that is, regions in the plane that contain exactly one endpoint of each segment of S. Concretely, we provide efficient algorithms for reporting all combinatorially different stabbing regions for S for regions that can be described as the intersection of axis-parallel halfplanes; these are halfplanes, strips, quadrants, 3-sided rectangles, and rectangles. The running times are O(n) (for the halfplane case), \(O(n\log n)\) (for strips, quadrants, and 3-sided rectangles), and \(O(n^2\log n)\) (for rectangles).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: Smallest color-spanning objects. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 278–292. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Abellanas, M., Hurtado, F., Icking, C., Klein, R., Langetepe, E., Ma, L., Palop, B., Sacristán, V.: The farthest color Voronoi diagram and related problems. In: Proceedings of the 17th European Workshop on Computational Geometry, pp. 113–116 (2001)

    Google Scholar 

  3. Atallah, M., Bajaj, C.: Efficient algorithms for common transversal. Inf. Process. Lett. 25, 87–91 (1987)

    Article  MathSciNet  Google Scholar 

  4. Avis, D., Wenger, R.: Polyhedral line transversals in space. Discrete Comput. Geom. 3, 257–265 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barba, L., Durocher, S., Fraser, R., Hurtado, F., Mehrabi, S., Mondal, D., Morrison, J., Skala, M., Wahid, M.A.: On \(k\)-enclosing objects in a coloured point set. In: Proc. of the 25th Canadian Conference on Computational Geometry, pp. 229–234 (2013)

    Google Scholar 

  6. Bhattacharya, B.K., Czyzowicz, J., Egyed, P., Toussaint, G., Stojmenovic, I., Urrutia, J.: Computing shortest transversals of sets. In: Proceedings of the 7th Annual Symposium on Computational Geometry, pp. 71–80 (1991)

    Google Scholar 

  7. Bhattacharya, B., Kumar, C., Mukhopadhyay, A.: Computing an area-optimal convex polygonal stabber of a set of parallel line segments. In: Proceedings of the 5th Canadian Conference on Computational Geometry, pp. 169–174 (1993)

    Google Scholar 

  8. Brönnimann, H., Everett, H., Lazard, S., Sottile, F., Whitesides, S.: Transversals to line segments in three-dimensional space. Discrete Comput. Geom. 34, 381–390 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Claverol, M.: Problemas geométricos en morfología computacional. Ph.D. thesis, Universitat Politècnica de Catalunya (2004)

    Google Scholar 

  10. Claverol, M., Garijo, D., Grima, C.I., Márquez, A., Seara, C.: Stabbers of line segments in the plane. Comput. Geom. Theor. Appl. 44(5), 303–318 (2011)

    Article  MATH  Google Scholar 

  11. Das, S., Goswami, P.P., Nandy, S.C.: Smallest color-spanning objects revisited. Int. J. Comput. Geom. Appl. 19(5), 457–478 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Díaz-Báñez, J.M., Korman, M., Pérez-Lantero, P., Pilz, A., Seara, C., Silveira, R.I.: New results on stabbing segments with a polygon. Comput. Geom. Theor. Appl. 48(1), 14–29 (2015)

    Article  Google Scholar 

  13. Edelsbrunner, H., Maurer, H.A., Preparata, F.P., Rosenberg, A.L., Welzl, E., Wood, D.: Stabbing line segments. BIT 22, 274–281 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fogel, E., Hemmer, M., Porat, A., Halperin, D.: Lines through segments in three dimensional space. In: Proceedings of the 29th European Workshop on Computational Geometry, Assisi, Italy, pp. 113–116 (2012)

    Google Scholar 

  15. Goodrich, M.T., Snoeyink, J.S.: Stabbing parallel segments with a convex polygon. In: Proceedings 1st Workshop Algorithms and Data Structures, pp. 231–242 (1989)

    Google Scholar 

  16. Kaplan, H., Rubin, N., Sharir, M.: Line transversal of convex polyhedra in \(\mathbb{R}^3\). SIAM J. Comput. 39(7), 3283–3310 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lyons, K.A., Meijer, H., Rappaport, D.: Minimum polygon stabbers of isothetic line segments. Dept. of Computing and Information Science, Queen’s University, Canada (1990)

    Google Scholar 

  18. Mukhopadhyay, A., Kumar, C., Greene, E., Bhattacharya, B.: On intersecting a set of parallel line segments with a convex polygon of minimum area. Inf. Process. Lett. 105, 58–64 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mukhopadhyay, A., Greene, E., Rao, S.V.: On intersecting a set of isothetic line segments with a convex polygon of minimum area. Int. J. Comput. Geom. Appl. 19(6), 557–577 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. O’Rourke, J.: An on-line algorithm for fitting straight lines between data ranges. Commun. ACM 24, 574–578 (1981)

    Article  MATH  Google Scholar 

  21. Pellegrini, M.: Lower bounds on stabbing lines in 3-space. Comput. Geom. Theory Appl. 3, 53–58 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rappaport, D.: Minimum polygon transversals of line segments. Int. J. Comput. Geom. Appl. 5(3), 243–256 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

M. C., C. S., and R.S were partially supported by projects MINECO MTM2012-30951 and Gen. Cat. DGR2014SGR46. D. G. was supported by project PAI FQM-0164. R.S. was partially funded by the Ramón y Cajal program (MINECO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo I. Silveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Claverol, M., Garijo, D., Korman, M., Seara, C., Silveira, R.I. (2015). Stabbing Segments with Rectilinear Objects. In: Kosowski, A., Walukiewicz, I. (eds) Fundamentals of Computation Theory. FCT 2015. Lecture Notes in Computer Science(), vol 9210. Springer, Cham. https://doi.org/10.1007/978-3-319-22177-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22177-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22176-2

  • Online ISBN: 978-3-319-22177-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics