Nothing Special   »   [go: up one dir, main page]

Skip to main content

Formalizing Size-Optimal Sorting Networks: Extracting a Certified Proof Checker

  • Conference paper
  • First Online:
Interactive Theorem Proving (ITP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9236))

Included in the following conference series:

Abstract

Since the proof of the four color theorem in 1976, computer-generated proofs have become a reality in mathematics and computer science. During the last decade, we have seen formal proofs using verified proof assistants being used to verify the validity of such proofs.

In this paper, we describe a formalized theory of size-optimal sorting networks. From this formalization we extract a certified checker that successfully verifies computer-generated proofs of optimality on up to 8 inputs. The checker relies on an untrusted oracle to shortcut the search for witnesses on more than 1.6 million NP-complete subproblems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The logs and the Java verifier are available at http://imada.sdu.dk/~petersk/sn/.

  2. 2.

    Comparator (ij) in comparator network \(C;(i,j);C'\) is redundant if \({\varvec{x}}_i<{\varvec{x}}_j\) for all \({\varvec{x}}\in \mathsf {outputs}(C)\) – in other words, (ij) never changes its inputs.

References

  1. Appel, K., Haken, W.: Every planar map is four colorable. Part I: discharging. Ill. J. Math. 21, 429–490 (1977)

    MATH  MathSciNet  Google Scholar 

  2. Appel, K., Haken, W., Koch, J.: Every planar map is four colorable. Part II: reducibility. Ill. J. Math. 21, 491–567 (1977)

    MATH  MathSciNet  Google Scholar 

  3. Barendregt, H., Wiedijk, F.: The challenge of computer mathematics. Trans. A Roy. Soc. 363(1835), 2351–2375 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.): ITP 2013. LNCS, vol. 7998. Springer, Heidelberg (2013)

    MATH  Google Scholar 

  5. Claret, G., González-Huesca, L.C., Régis-Gianas, Y., Ziliani, B.: Lightweight proof by reflection using a posteriori simulation of effectful computation. In Blazy et al. [4], pp. 67–83

    Google Scholar 

  6. Codish, M., Cruz-Filipe, L., Frank, M., Schneider-Kamp, P.: Twenty-five comparators is optimal when sorting nine inputs (and twenty-nine for ten). In: ICTAI 2014, pp. 186–193. IEEE (2014)

    Google Scholar 

  7. Contejean, E., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Automated certified proofs with CiME3. In: Schmidt-Schauß, M., (ed.) RTA 2011. LIPIcs, vol. 10, pp. 21–30. Schloss Dagstuhl (2011)

    Google Scholar 

  8. Cruz-Filipe, L., Schneider-Kamp, P.: Optimizing a certified proof checker for a large-scale computer-generated proof. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 55–70. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  9. Floyd, R.W., Knuth, D.E.: The Bose-Nelson sorting problem. In: Srivastava, J.N. (ed.) A Survey of Combinatorial Theory, pp. 163–172. North-Holland, Amsterdam (1973)

    Google Scholar 

  10. Fouilhe, A., Monniaux, D., Périn, M.: Efficient generation of correctness certificates for the abstract domain of polyhedra. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS, vol. 7935, pp. 345–365. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Gonthier, G.: Formal proof - the four-color theorem. Not. AMS 55(11), 1382–1393 (2008)

    MATH  MathSciNet  Google Scholar 

  12. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3. Addison-Wesley, Reading (1973)

    Google Scholar 

  13. Konev, B., Lisitsa, A.: A SAT attack on the Erdős discrepancy conjecture. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 219–226. Springer, Heidelberg (2014)

    Google Scholar 

  14. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115 (2009)

    Article  Google Scholar 

  15. Parberry, I.: A computer-assisted optimal depth lower bound for nine-input sorting networks. Math. Syst. Theor. 24(2), 101–116 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  16. Sternagel, C., Thiemann, R.: The certification problem format. In: Benzmüller, C., Paleo, B.W. (eds.) UITP 2014. EPTCS, vol. 167, pp. 61–72 (2014)

    Google Scholar 

  17. Thiemann, R.: Formalizing bounded increase. In: Blazy et al. [4], pp. 245–260

    Google Scholar 

  18. van Voorhis, D.C.: Toward a lower bound for sorting networks. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations. The IBM Research Symposia Series, pp. 119–129. Plenum Press, New York (1972)

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Femke van Raamsdonk, whose initial skepticism about our informal proof inspired this work, and Michael Codish for his support and his enthusiasm about sorting networks. The authors were supported by the Danish Council for Independent Research, Natural Sciences. Computational resources were generously provided by the Danish Center for Scientific Computing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Cruz-Filipe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cruz-Filipe, L., Schneider-Kamp, P. (2015). Formalizing Size-Optimal Sorting Networks: Extracting a Certified Proof Checker. In: Urban, C., Zhang, X. (eds) Interactive Theorem Proving. ITP 2015. Lecture Notes in Computer Science(), vol 9236. Springer, Cham. https://doi.org/10.1007/978-3-319-22102-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22102-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22101-4

  • Online ISBN: 978-3-319-22102-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics