Abstract
This paper discusses parallelization of the computationally intensive numerical factorization phase of sparse Cholesky factorization on shared memory systems. We propose and compare two parallel algorithms based on the multifrontal method. Both algorithms are implemented in a task-based fashion employing dynamic load balance. The first algorithm associates OpenMP tasks with the nodes of an elimination tree and relies on the OpenMP scheduler. The second algorithm employs a concurrent priority queue to implement balancing. Experimental results on symmetric positive definite matrices from the University of Florida Sparse Matrix Collection show that our implementation is comparable to MUMPS and Intel MKL PARDISO in terms of performance and scaling efficiency on shared memory systems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rennich, S.C., Stosic, D., Davis, T.A.: Accelerating sparse Cholesky factorization on GPUs. In: Proceedings of the Fourth Workshop on Irregular Applications: Architectures and Algorithms. pp. 9–16. IEEE Press (2014)
Davis, T.A.: Direct Methods for Sparse Linear Systems. Fundamental of Algorithms, vol. 2. SIAM, Philadelphia (2006)
Liu, J.W.: The multifrontal method for sparse matrix solution: theory and practice. SIAM Rev. 34(1), 82–109 (1992)
Duff, I.S., et al.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986)
Davis, T.A.: User Guide For Cholmod: A Sparse Cholesky Factorization and Modification Package. Department of Computer and Information Science and Engineering, University of Florida, Gainesville (2008)
Li, X.S.: An overview of SuperLU: algorithms, implementation, and user interface. ACM Trans. Math. Softw. (TOMS) 31(3), 302–325 (2005)
Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear. ACM Trans. Math. Softw. (TOMS) 9(3), 302–325 (1983)
Duff, I.S., Reid, J.K.: The multifrontal solution of unsymmetric sets of linear equations. SIAM J. Sci. Stat. Comput. 5(3), 633–641 (1984)
Liu, J.W.: The multifrontal method and paging in sparse Cholesky factorization. ACM Trans. Math. Softw. (TOMS) 15(4), 310–325 (1989)
Amestoy, P.R., et al.: Vectorization of a multiprocessor multifrontal code. Int. J. High Perform. Comput. Appl. 3(3), 41–59 (1989)
Amestoy, P.R., et al.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)
Ashcraft, C.C., Grimes, R.G., Lewis, J.G., Peyton, B.W., Simon, H.D., Bjorstad, P.E.: Progress in sparse matrix methods for large linear systems on vector supercomputers. Int. J. High Perform. Comput. Appl. 1(4), 10–30 (1987)
Ng, E.G., Peyton, B.W.: Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM J. Sci. Comput. 14(5), 1034–1056 (1993)
Ng, E., Peyton, B.W.: A supernodal Cholesky factorization algorithm for shared-memory multiprocessors. SIAM J. Sci. Comput. 14(4), 761–769 (1993)
Demmel, J.W., Eisenstat, S.C., et al.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)
L’Excellent, J.Y.: Multifrontal Methods: Parallelism, Memory Usage and Numerical Aspects. Ph.D. thesis, Ecole normale superieure de lyon-ENS LYON (2012)
Geist, G., Ng, E.: Task scheduling for parallel sparse Cholesky factorization. Int. J. Parallel Prog. 18(4), 291–314 (1989)
Ashcraft, C., Eisenstat, S.C., Liu, J.W., Sherman, A.H.: A comparison of three column-based distributed sparse factorization schemes. Technical report, DTIC Document (1990)
Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. (TOMS) 38(1), 1 (2011)
Karypis, G., et al.: A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)
Pellegrini, F.: Scotch and libScotch 6.0 User’s Guide. Technical report, LaBRI (2012)
Pirova, A.Yu., Meyerov, I.B.: MORSy – a new tool for sparse matrix reordering. In: Proceedings of an International Conference on Engineering and Applied Sciences Optimization, pp. 1952–1963 (2014)
L’Excellent, J.Y., Sid-Lakhdar, M.W.: Introduction of shared-memory parallelism in a distributed-memory multifrontal solver (2013)
Acknowledgments
The study was partially supported by the RFBR, research project No. 14-01-3145514 and by the grant 02.B.49.21.0003 of The Ministry of education and science of the Russian Federation.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lebedev, S., Akhmedzhanov, D., Kozinov, E., Meyerov, I., Pirova, A., Sysoyev, A. (2015). Dynamic Parallelization Strategies for Multifrontal Sparse Cholesky Factorization. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2015. Lecture Notes in Computer Science(), vol 9251. Springer, Cham. https://doi.org/10.1007/978-3-319-21909-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-21909-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21908-0
Online ISBN: 978-3-319-21909-7
eBook Packages: Computer ScienceComputer Science (R0)