Nothing Special   »   [go: up one dir, main page]

Skip to main content

Dynamic Parallelization Strategies for Multifrontal Sparse Cholesky Factorization

  • Conference paper
  • First Online:
Parallel Computing Technologies (PaCT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9251))

Included in the following conference series:

Abstract

This paper discusses parallelization of the computationally intensive numerical factorization phase of sparse Cholesky factorization on shared memory systems. We propose and compare two parallel algorithms based on the multifrontal method. Both algorithms are implemented in a task-based fashion employing dynamic load balance. The first algorithm associates OpenMP tasks with the nodes of an elimination tree and relies on the OpenMP scheduler. The second algorithm employs a concurrent priority queue to implement balancing. Experimental results on symmetric positive definite matrices from the University of Florida Sparse Matrix Collection show that our implementation is comparable to MUMPS and Intel MKL PARDISO in terms of performance and scaling efficiency on shared memory systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rennich, S.C., Stosic, D., Davis, T.A.: Accelerating sparse Cholesky factorization on GPUs. In: Proceedings of the Fourth Workshop on Irregular Applications: Architectures and Algorithms. pp. 9–16. IEEE Press (2014)

    Google Scholar 

  2. Davis, T.A.: Direct Methods for Sparse Linear Systems. Fundamental of Algorithms, vol. 2. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  3. Liu, J.W.: The multifrontal method for sparse matrix solution: theory and practice. SIAM Rev. 34(1), 82–109 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Duff, I.S., et al.: Direct Methods for Sparse Matrices. Clarendon Press, Oxford (1986)

    MATH  Google Scholar 

  5. Davis, T.A.: User Guide For Cholmod: A Sparse Cholesky Factorization and Modification Package. Department of Computer and Information Science and Engineering, University of Florida, Gainesville (2008)

    Google Scholar 

  6. Li, X.S.: An overview of SuperLU: algorithms, implementation, and user interface. ACM Trans. Math. Softw. (TOMS) 31(3), 302–325 (2005)

    Article  MATH  Google Scholar 

  7. Duff, I.S., Reid, J.K.: The multifrontal solution of indefinite sparse symmetric linear. ACM Trans. Math. Softw. (TOMS) 9(3), 302–325 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Duff, I.S., Reid, J.K.: The multifrontal solution of unsymmetric sets of linear equations. SIAM J. Sci. Stat. Comput. 5(3), 633–641 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, J.W.: The multifrontal method and paging in sparse Cholesky factorization. ACM Trans. Math. Softw. (TOMS) 15(4), 310–325 (1989)

    Article  MATH  Google Scholar 

  10. Amestoy, P.R., et al.: Vectorization of a multiprocessor multifrontal code. Int. J. High Perform. Comput. Appl. 3(3), 41–59 (1989)

    Article  Google Scholar 

  11. Amestoy, P.R., et al.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23(1), 15–41 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ashcraft, C.C., Grimes, R.G., Lewis, J.G., Peyton, B.W., Simon, H.D., Bjorstad, P.E.: Progress in sparse matrix methods for large linear systems on vector supercomputers. Int. J. High Perform. Comput. Appl. 1(4), 10–30 (1987)

    Article  Google Scholar 

  13. Ng, E.G., Peyton, B.W.: Block sparse Cholesky algorithms on advanced uniprocessor computers. SIAM J. Sci. Comput. 14(5), 1034–1056 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ng, E., Peyton, B.W.: A supernodal Cholesky factorization algorithm for shared-memory multiprocessors. SIAM J. Sci. Comput. 14(4), 761–769 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  15. Demmel, J.W., Eisenstat, S.C., et al.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. L’Excellent, J.Y.: Multifrontal Methods: Parallelism, Memory Usage and Numerical Aspects. Ph.D. thesis, Ecole normale superieure de lyon-ENS LYON (2012)

    Google Scholar 

  17. Geist, G., Ng, E.: Task scheduling for parallel sparse Cholesky factorization. Int. J. Parallel Prog. 18(4), 291–314 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ashcraft, C., Eisenstat, S.C., Liu, J.W., Sherman, A.H.: A comparison of three column-based distributed sparse factorization schemes. Technical report, DTIC Document (1990)

    Google Scholar 

  19. Davis, T.A., Hu, Y.: The university of Florida sparse matrix collection. ACM Trans. Math. Softw. (TOMS) 38(1), 1 (2011)

    MathSciNet  Google Scholar 

  20. Karypis, G., et al.: A fast and highly quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pellegrini, F.: Scotch and libScotch 6.0 User’s Guide. Technical report, LaBRI (2012)

    Google Scholar 

  22. Pirova, A.Yu., Meyerov, I.B.: MORSy – a new tool for sparse matrix reordering. In: Proceedings of an International Conference on Engineering and Applied Sciences Optimization, pp. 1952–1963 (2014)

    Google Scholar 

  23. L’Excellent, J.Y., Sid-Lakhdar, M.W.: Introduction of shared-memory parallelism in a distributed-memory multifrontal solver (2013)

    Google Scholar 

Download references

Acknowledgments

The study was partially supported by the RFBR, research project No. 14-01-3145514 and by the grant 02.B.49.21.0003 of The Ministry of education and science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iosif Meyerov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lebedev, S., Akhmedzhanov, D., Kozinov, E., Meyerov, I., Pirova, A., Sysoyev, A. (2015). Dynamic Parallelization Strategies for Multifrontal Sparse Cholesky Factorization. In: Malyshkin, V. (eds) Parallel Computing Technologies. PaCT 2015. Lecture Notes in Computer Science(), vol 9251. Springer, Cham. https://doi.org/10.1007/978-3-319-21909-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21909-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21908-0

  • Online ISBN: 978-3-319-21909-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics