Nothing Special   »   [go: up one dir, main page]

Skip to main content

Optimal Preference Detection Based on Golden Section and Genetic Algorithm for Affinity Propagation Clustering

  • Conference paper
  • First Online:
Wireless Algorithms, Systems, and Applications (WASA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9204))

Abstract

Affinity Propagation Clustering Algorithm is a well-known effective clustering algorithm that outperforms other traditional and classical clustering algorithms, and the selection of related sensitive parameters (preference, damping factor) is a popular research topic. In this paper, a feasible detecting procedure “GS/GA-AP” based on Golden Section and Genetic Algorithm is proposed to address the aforementioned issue. As a default option, preference is given based on golden section for Affinity Propagation. Unsatisfactory clustering result is robust with selection of preference with Genetic Algorithm. One simulation dataset and five standard benchmark datasets are utilized to verify effectiveness of algorithm we proposed, and the experiment results show that GS/GA-AP outperforms traditional Affinity Propagation clustering algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Han, J., Kamber, M., Pei, J.: Cluster Analysis. In: Data Mining: Concepts and Techniques, Third Edition, pp. 443–444. Elsevier Inc. (2006)

    Google Scholar 

  2. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Sci. 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Givoni, I.E., Frey, B.J.: A binary variable model for affinity propagation. Neural comput. 21(6), 1589–1600 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Zhang, X., Wang, W., Nørvag, K., Sebag, M.: K-AP: generating specified k clusters by efficient affinity propagation. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp. 1187–1192. IEEE (2010)

    Google Scholar 

  5. Tang, D.M., Zhu, Q.X., Yang, F.: A poisson-based adaptive affinity propagation clustering for sage data. Comput. Biol. Chem. 34(1), 63–70 (2010)

    Article  MathSciNet  Google Scholar 

  6. Givoni, I., Chung, C., Frey, B.J.: Hierarchical affinity propagation (2012) . arXiv preprint arXiv:1202.3722

  7. Wang, C.-D., Lai, J.-H., Suen, C.Y., Zhu, J.-Y.: Multi-exemplar affinity propagation. IEEE Trans. Pattern Anal. Mach. Intell. 9, 2223–2237 (2013)

    Article  Google Scholar 

  8. Wang, K., Zhang, J., Li, D., Zhang, X., Guo, T.: Adaptive affinity propagation clustering (2008). arXiv preprint arXiv:0805.1096

  9. He, Y., Chen, Q., Wang, X., Xu, R., Bai, X., Meng, X.: An adaptive affinity propagation document clustering. In: 2010 The 7th International Conference on Informatics and Systems (INFOS), pp. 1–7. IEEE (2010)

    Google Scholar 

  10. Hongjun, S., Sheng, Y., Peijun, D., Liu, K.: Adaptive affinity propagation with spectral angle mapper for semi-supervised hyperspectral band selection. Appl. Opt. 51(14), 2656–2663 (2012)

    Article  Google Scholar 

  11. Chen, D.-W., Sheng, J.-Q., Chen, J.-J., Wang, C.-D.: Stability-based preference selection in affinity propagation. Neural Comput. Appl. 25(7–8), 1809–1822 (2014)

    Article  Google Scholar 

  12. Wang, X., Qin, Z., Zhang, X.: Automatically affinity propagation clustering using particle swarm. J. Comput. 5(11), 1731–1738 (2010)

    Google Scholar 

  13. Wang, X.-H., Zhang, X.-P., Zhuang, C.-X., Chen, Z.-N., Qin, Z.: Automatically determining the number of affinity propagation clustering using particle swarm. In: 2010 the 5th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 1526–1530. IEEE (2010)

    Google Scholar 

  14. Zhong, Y., Zheng, M., Wu, J., Shen, W., Zhou, Y., Zhou, C.: Search the optimal preference of affinity propagation algorithm. In: 2012 Fifth International Conference on Intelligent Computation Technology and Automation (ICICTA), pp. 304–307. IEEE (2012)

    Google Scholar 

  15. Xiazhu, Y., Wenli, D., Liang, Z., Feng, Q.: Energy consumption monitoring of the steam pipe network based on affinity propagation clustering. In: 2012 10th World Congress on Intelligent Control and Automation (WCICA), pp. 3364–3368. IEEE (2012)

    Google Scholar 

  16. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Sci. 315, 972–976 (2007). Supporting online material

    Article  MathSciNet  MATH  Google Scholar 

  17. Holland, J.H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. U Michigan Press, Ann Arbor (1975)

    Google Scholar 

  18. scikit-learn. online. http://scikit-learn.org/stable

  19. Uci irvine machine learning repository. http://archive.ics.uci.edu/ml/index.html

Download references

Acknowledgements

This research is sponsored by National Natural Science Foundation of China (No.61171014, 61472044, 11401028) and the Fundamental Research Funds for the Central Universities(No. 2014KJJCB32, 2013NT57, 2012LYB46) and by SRF for ROCS, SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenling Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Jiao, L., Zhang, G., Wang, S., Mehmood, R., Bie, R. (2015). Optimal Preference Detection Based on Golden Section and Genetic Algorithm for Affinity Propagation Clustering. In: Xu, K., Zhu, H. (eds) Wireless Algorithms, Systems, and Applications. WASA 2015. Lecture Notes in Computer Science(), vol 9204. Springer, Cham. https://doi.org/10.1007/978-3-319-21837-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21837-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21836-6

  • Online ISBN: 978-3-319-21837-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics