Abstract
Thue characterized completely the avoidability of unary patterns. Adding function variables gives a general setting capturing avoidance of powers, avoidance of patterns with palindromes, avoidance of powers under coding, and other questions of recent interest. Unary patterns with permutations have been previously analysed only for lengths up to 3. Consider a pattern \(p=\pi _{i_1}(x)\ldots \pi _{i_r}(x)\), with \(r\ge 4\), x a word variable over an alphabet \(\Sigma \) and \(\pi _{i_j}\) function variables, to be replaced by morphic or antimorphic permutations of \(\Sigma \). If \(|\Sigma |\ge 3\), we show the existence of an infinite word avoiding all pattern instances having \(|x|\ge 2\). If \(|\Sigma |=3\) and all \(\pi _{i_j}\) are powers of a single \(\pi \), the length restriction is removed. In general, the restriction on x cannot be removed, even for powers of permutations: for every positive integer n there exists N and a pattern \(\pi ^{i_1}(x)\ldots \pi ^{i_n}(x)\) which is unavoidable over all \(\Sigma \).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bischoff, B., Currie, J., Nowotka, D.: Unary patterns with involution. Int. J. Found. Comput. Sci. 23(8), 1641–1652 (2012)
Chiniforooshan, E., Kari, L., Xu, Z.: Pseudopower avoidance. Fundam. Inform. 114(1), 55–72 (2012)
Currie, J.: Pattern avoidance: themes and variations. Theoret. Comput. Sci. 339(1), 7–18 (2005)
Hall, M.: Lectures on Modern Mathematics, vol. 2, chap. Generators and relations in groups - The Burnside problem, pp. 42–92. Wiley, New York (1964)
Lothaire, M.: Combinatorics on Words. Cambridge University Press (1997)
Manea, F., Müller, M., Nowotka, D.: The avoidability of cubes under permutations. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 416–427. Springer, Heidelberg (2012)
Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Skrifter I. Mat.-Nat. Kl., Christiania 7, 1–22 (1906)
Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Skrifter I. Mat.-Nat. Kl., Christiania 1, 1–67 (1912)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Currie, J., Manea, F., Nowotka, D. (2015). Unary Patterns with Permutations. In: Potapov, I. (eds) Developments in Language Theory. DLT 2015. Lecture Notes in Computer Science(), vol 9168. Springer, Cham. https://doi.org/10.1007/978-3-319-21500-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-21500-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21499-3
Online ISBN: 978-3-319-21500-6
eBook Packages: Computer ScienceComputer Science (R0)