Nothing Special   »   [go: up one dir, main page]

Skip to main content

Unary Patterns with Permutations

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9168))

Included in the following conference series:

Abstract

Thue characterized completely the avoidability of unary patterns. Adding function variables gives a general setting capturing avoidance of powers, avoidance of patterns with palindromes, avoidance of powers under coding, and other questions of recent interest. Unary patterns with permutations have been previously analysed only for lengths up to 3. Consider a pattern \(p=\pi _{i_1}(x)\ldots \pi _{i_r}(x)\), with \(r\ge 4\), x a word variable over an alphabet \(\Sigma \) and \(\pi _{i_j}\) function variables, to be replaced by morphic or antimorphic permutations of \(\Sigma \). If \(|\Sigma |\ge 3\), we show the existence of an infinite word avoiding all pattern instances having \(|x|\ge 2\). If \(|\Sigma |=3\) and all \(\pi _{i_j}\) are powers of a single \(\pi \), the length restriction is removed. In general, the restriction on x cannot be removed, even for powers of permutations: for every positive integer n there exists N and a pattern \(\pi ^{i_1}(x)\ldots \pi ^{i_n}(x)\) which is unavoidable over all \(\Sigma \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bischoff, B., Currie, J., Nowotka, D.: Unary patterns with involution. Int. J. Found. Comput. Sci. 23(8), 1641–1652 (2012)

    Article  MathSciNet  Google Scholar 

  2. Chiniforooshan, E., Kari, L., Xu, Z.: Pseudopower avoidance. Fundam. Inform. 114(1), 55–72 (2012)

    MathSciNet  Google Scholar 

  3. Currie, J.: Pattern avoidance: themes and variations. Theoret. Comput. Sci. 339(1), 7–18 (2005)

    Article  MathSciNet  Google Scholar 

  4. Hall, M.: Lectures on Modern Mathematics, vol. 2, chap. Generators and relations in groups - The Burnside problem, pp. 42–92. Wiley, New York (1964)

    Google Scholar 

  5. Lothaire, M.: Combinatorics on Words. Cambridge University Press (1997)

    Google Scholar 

  6. Manea, F., Müller, M., Nowotka, D.: The avoidability of cubes under permutations. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp. 416–427. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  7. Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Skrifter I. Mat.-Nat. Kl., Christiania 7, 1–22 (1906)

    Google Scholar 

  8. Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Skrifter I. Mat.-Nat. Kl., Christiania 1, 1–67 (1912)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Nowotka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Currie, J., Manea, F., Nowotka, D. (2015). Unary Patterns with Permutations. In: Potapov, I. (eds) Developments in Language Theory. DLT 2015. Lecture Notes in Computer Science(), vol 9168. Springer, Cham. https://doi.org/10.1007/978-3-319-21500-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21500-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21499-3

  • Online ISBN: 978-3-319-21500-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics