Abstract
A mutual information rate is proposed to quantitatively evaluate inter-process synchronized communication. For finite-state processes with implicit communication that can be described by a counting language, it is shown that the mutual information rate is effectively computable. When the synchronization always happens between the same two symbols at the same time (or with a fixed delay), the mutual information rate is computable. In contrast, when the delay is not fixed, the rate is not computable. Finally, it is shown that some cases exist where the mutual information rate is not computable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: discretization approach. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 69–83. Springer, Heidelberg (2009)
Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)
Chen, H., Malacaria, P.: Quantitative analysis of leakage for multi-threaded programs. In: PLAS 2007, pp. 31–40. ACM (2007)
Cover, T.M., Thomas, J.A.: Elements of information theory, 2nd edn. Wiley-Interscience (2006)
Cui, C. , Dang, Z., Fischer, T., Ibarra, O.: Execution information rate for some classes of automata. Information and Computation (2015) to appear
Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Information rate of some classes of non-regular languages: an automata-theoretic approach. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 232–243. Springer, Heidelberg (2014)
Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Execution information rate for some classes of automata. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 226–237. Springer, Heidelberg (2013)
Chomsky, N., Miller, G.A.: Finite state languages. Information and Control 1, 91–112 (1958)
Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Similarity in languages and programs. Theor. Comput. Sci. 498, 58–75 (2013)
Dang, Z., Ibarra, O., Bultan, T., Kemmerer, R., Su, J.: Binary reachability analysis of discrete pushdown timed automata. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 69–84. Springer, Heidelberg (2000)
Dang, Z., Ibarra, O., Li, Q.: Sampling a two-way finite automaton. In: Automata, Universality, Computation, the series book: Emergence, Complexity and Computation. Springer (2014)
Dang, Z.: Pushdown timed automata: a binary reachability characterization and safety verification. Theoretical Computer Science 301(13), 93–121 (2003)
Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn multicounter machines. Journal of Computer and System Sciences 22(2), 220–229 (1981)
Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)
Ibarra, O.H., Dang, Z., Egecioglu, O., Saxena, G.: Characterizations of catalytic membrane computing systems. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 480–489. Springer, Heidelberg (2003)
Kaminger, F.P.: The noncomputability of the channel capacity of context-sensitive languages. Inf. Comput. 17(2), 175–182 (1970)
Kuich, W.: On the entropy of context-free languages. Information and Control 16(2), 173–20 (1970)
Kushilevitz, E.: Communication complexity. Advances in Computers 44, 331–360 (1997)
Muller, S., Chong, S.: Towards a practical secure concurrent language. SIGPLAN Not. 47(10), 57–74 (2012)
Paun, G.: Membrane Computing, an Introduction. Springer (2000)
Papadimitriou, C.H., Sipser, M.: Communication complexity. Journal of Computer and System Sciences 28(2), 260–269 (1984)
Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press (1949)
Shaffer, A.B., Auguston, M., Irvine, C.E., Levin, T.E.: A security domain model to assess software for exploitable covert channels. In: PLAS 2008, pp. 45–56. ACM (2008)
Staiger, L.: The entropy of Lukasiewicz-languages. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 155–165. Springer, Heidelberg (2002)
Wang, E., Cui, C., Dang, Z., Fischer, T.R., Yang, L.: Zero-knowledge black box testing: where are the faults? International Journal of Foundations of Computer Science 25(2), 196–218 (2014)
Xie, G., Dang, Z., Ibarra, O.: A solvable class of quadratic Diophantine equations with applications to verification of infinite-state systems. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 668–680. Springer, Heidelberg (2003)
Yao, A.C.: Some complexity questions related to distributive computing (preliminary report). In: STOC 1979, pp. 209–213. ACM (1979)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Dang, Z., Fischer, T.R., Hutton, W.J., Ibarra, O.H., Li, Q. (2015). Quantifying Communication in Synchronized Languages. In: Xu, D., Du, D., Du, D. (eds) Computing and Combinatorics. COCOON 2015. Lecture Notes in Computer Science(), vol 9198. Springer, Cham. https://doi.org/10.1007/978-3-319-21398-9_50
Download citation
DOI: https://doi.org/10.1007/978-3-319-21398-9_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21397-2
Online ISBN: 978-3-319-21398-9
eBook Packages: Computer ScienceComputer Science (R0)