Nothing Special   »   [go: up one dir, main page]

Skip to main content

Quantifying Communication in Synchronized Languages

  • Conference paper
  • First Online:
Computing and Combinatorics (COCOON 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9198))

Included in the following conference series:

Abstract

A mutual information rate is proposed to quantitatively evaluate inter-process synchronized communication. For finite-state processes with implicit communication that can be described by a counting language, it is shown that the mutual information rate is effectively computable. When the synchronization always happens between the same two symbols at the same time (or with a fixed delay), the mutual information rate is computable. In contrast, when the delay is not fixed, the rate is not computable. Finally, it is shown that some cases exist where the mutual information rate is not computable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Asarin, E., Degorre, A.: Volume and entropy of regular timed languages: discretization approach. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 69–83. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, H., Malacaria, P.: Quantitative analysis of leakage for multi-threaded programs. In: PLAS 2007, pp. 31–40. ACM (2007)

    Google Scholar 

  4. Cover, T.M., Thomas, J.A.: Elements of information theory, 2nd edn. Wiley-Interscience (2006)

    Google Scholar 

  5. Cui, C. , Dang, Z., Fischer, T., Ibarra, O.: Execution information rate for some classes of automata. Information and Computation (2015) to appear

    Google Scholar 

  6. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Information rate of some classes of non-regular languages: an automata-theoretic approach. In: Csuhaj-Varjú, E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014, Part I. LNCS, vol. 8634, pp. 232–243. Springer, Heidelberg (2014)

    Google Scholar 

  7. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Execution information rate for some classes of automata. In: Dediu, A.-H., Martín-Vide, C., Truthe, B. (eds.) LATA 2013. LNCS, vol. 7810, pp. 226–237. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Chomsky, N., Miller, G.A.: Finite state languages. Information and Control 1, 91–112 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cui, C., Dang, Z., Fischer, T.R., Ibarra, O.H.: Similarity in languages and programs. Theor. Comput. Sci. 498, 58–75 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dang, Z., Ibarra, O., Bultan, T., Kemmerer, R., Su, J.: Binary reachability analysis of discrete pushdown timed automata. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 69–84. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Dang, Z., Ibarra, O., Li, Q.: Sampling a two-way finite automaton. In: Automata, Universality, Computation, the series book: Emergence, Complexity and Computation. Springer (2014)

    Google Scholar 

  12. Dang, Z.: Pushdown timed automata: a binary reachability characterization and safety verification. Theoretical Computer Science 301(13), 93–121 (2003)

    Article  MathSciNet  Google Scholar 

  13. Gurari, E.M., Ibarra, O.H.: The complexity of decision problems for finite-turn multicounter machines. Journal of Computer and System Sciences 22(2), 220–229 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ibarra, O.H.: Reversal-bounded multicounter machines and their decision problems. J. ACM 25(1), 116–133 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ibarra, O.H., Dang, Z., Egecioglu, O., Saxena, G.: Characterizations of catalytic membrane computing systems. In: Rovan, B., Vojtáš, P. (eds.) MFCS 2003. LNCS, vol. 2747, pp. 480–489. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  16. Kaminger, F.P.: The noncomputability of the channel capacity of context-sensitive languages. Inf. Comput. 17(2), 175–182 (1970)

    MATH  MathSciNet  Google Scholar 

  17. Kuich, W.: On the entropy of context-free languages. Information and Control 16(2), 173–20 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kushilevitz, E.: Communication complexity. Advances in Computers 44, 331–360 (1997)

    Google Scholar 

  19. Muller, S., Chong, S.: Towards a practical secure concurrent language. SIGPLAN Not. 47(10), 57–74 (2012)

    Article  Google Scholar 

  20. Paun, G.: Membrane Computing, an Introduction. Springer (2000)

    Google Scholar 

  21. Papadimitriou, C.H., Sipser, M.: Communication complexity. Journal of Computer and System Sciences 28(2), 260–269 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press (1949)

    Google Scholar 

  23. Shaffer, A.B., Auguston, M., Irvine, C.E., Levin, T.E.: A security domain model to assess software for exploitable covert channels. In: PLAS 2008, pp. 45–56. ACM (2008)

    Google Scholar 

  24. Staiger, L.: The entropy of Lukasiewicz-languages. In: Kuich, W., Rozenberg, G., Salomaa, A. (eds.) DLT 2001. LNCS, vol. 2295, pp. 155–165. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  25. Wang, E., Cui, C., Dang, Z., Fischer, T.R., Yang, L.: Zero-knowledge black box testing: where are the faults? International Journal of Foundations of Computer Science 25(2), 196–218 (2014)

    MathSciNet  Google Scholar 

  26. Xie, G., Dang, Z., Ibarra, O.: A solvable class of quadratic Diophantine equations with applications to verification of infinite-state systems. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 668–680. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Yao, A.C.: Some complexity questions related to distributive computing (preliminary report). In: STOC 1979, pp. 209–213. ACM (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Hutton III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dang, Z., Fischer, T.R., Hutton, W.J., Ibarra, O.H., Li, Q. (2015). Quantifying Communication in Synchronized Languages. In: Xu, D., Du, D., Du, D. (eds) Computing and Combinatorics. COCOON 2015. Lecture Notes in Computer Science(), vol 9198. Springer, Cham. https://doi.org/10.1007/978-3-319-21398-9_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21398-9_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21397-2

  • Online ISBN: 978-3-319-21398-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics