Abstract
This paper provides a technique for designing truthful mechanisms for a combinatorial optimization problem, which requires composition algorithms. We show that the composition algorithm \(A\circ B\) is monotone if the algorithm A and the algorithm B are both monotone. Then, we apply this technique to the two-dimensional orthogonal knapsack problem with provable approximation bounds, improving the previous results in [5].
D. Ye—Research was supported in part by China Scholarship Council.
G. Zhang—Research was supported by NSFC(11271325).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andelman, N., Azar, Y., Sorani, M.: Truthful approximation mechanisms for scheduling selfish related machines. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 69–82. Springer, Heidelberg (2005)
Archer, A., Tardos, É.: Truthful mechanisms for one-parameter agents. In: Proceedings of the 42nd IEEE Symposium on Foundations of Computer Science (FOCS), pp. 482–491 (2001)
Archer, A.F.: Mechanisms for discrete optimization with rational agents. Ph.D. thesis, Cornell University (2004)
Auletta, V., De Prisco, R., Penna, P., Persiano, G.: Deterministic truthful approximation mechanisms for scheduling related machines. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 608–619. Springer, Heidelberg (2004)
Babaioff, M., Blumrosen, L.: Computationally-feasible truthful auctions for convex bundles. Games and Economic Behavior 63(2), 588–620 (2008)
Bougeret, M., Dutot, P.-F., Jansen, K., Otte, C., Trystram, D.: A fast 5/2-approximation algorithm for hierarchical scheduling. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010, Part I. LNCS, vol. 6271, pp. 157–167. Springer, Heidelberg (2010)
Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: Approximating the non-contiguous multiple organization packing problem. In: Calude, C.S., Sassone, V. (eds.) TCS 2010. IFIP AICT, vol. 323, pp. 316–327. Springer, Heidelberg (2010)
Bougeret, M., Dutot, P.F., Jansen, K., Otte, C., Trystram, D.: Approximation algorithms for multiple strip packing. In: Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 37–48. Springer, Heidelberg (2010)
Bougeret, M., Dutot, P.F., Trystram, D.: An extention of the 5/2-approximation algorithm using oracle. Research Report (2010)
Briest, P., Krysta, P., Vöcking, B.: Approximation techniques for utilitarian mechanism design. SIAM Journal on Computing 40(6), 1587–1622 (2011)
Caprara, A., Kellerer, H., Pferschy, U.: The multiple subset sum problem. SIAM Journal on Optimization 11, 308–319 (2000)
Chekuri, C., Gamzu, I.: Truthful mechanisms via greedy iterative packing. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) Approximation, Randomization, and Combinatorial Optimization. LNCS, vol. 5687, pp. 56–69. Springer, Heidelberg (2009)
Chekuri, C., Khanna, S.: On multi-dimensional packing problems. In: Proceedings of the 10th annual ACM-SIAM symposium on Discrete Algorithms (SODA), pp. 185–194 (1999)
Christodoulou, G., Kovács, A.: A deterministic truthful ptas for scheduling related machines. In: Proceedings of the 21th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1005–1016 (2010)
Coffman, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E.: Performance bounds for level oriented two-dimensional packing algorithms. SIAM Journal on Computing 9, 808–826 (1980)
Dhangwatnotai, P., Dobzinski, S., Dughmi, S., Roughgarden, T.: Truthful approximation schemes for single-parameter agents. In: Proceedings of 49th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 15–24 (2008)
Dughmi, S., Roughgarden, T.: Black-box randomized reductions in algorithmic mechanism design. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 775–784 (2010)
Fishkin, A.V., Gerber, O., Jansen, K., Solis-Oba, R.: On packing rectangles with resource augmentation: Maximizing the profit. Algorithmic Operations Research 3(1), 1–12 (2008)
Grandoni, F., Krysta, P., Leonardi, S., Ventre, C.: Utilitarian mechanism design for multi-objective optimization. In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 573–584 (2010)
Jansen, K.: Parameterized approximation scheme for the multiple knapsack problem. SIAM Journal on Computing 39, 1392–1412 (2009)
Jansen, K., Zhang, G.: Maximizing the total profit of rectangles packed into a rectangle. Algorithmica 47(3), 323–342 (2007)
Kellerer, H.: A polynomial time approximation scheme for the multiple knapsack problem. In: Hochbaum, D.S., Jansen, K., Rolim, J.D.P., Sinclair, A. (eds.) RANDOM 1999 and APPROX 1999. LNCS, vol. 1671, pp. 51–62. Springer, Heidelberg (1999)
Kulik, A., Shachnai, H.: There is no eptas for two-dimensional knapsack. Information Processing Letters 110(16), 707–710 (2010)
Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. Journal of the ACM 58(6), 25 (2011)
Lehmann, D., Oćallaghan, L.I., Shoham, Y.: Truth revelation in approximately efficient combinatorial auctions. Journal of the ACM (JACM) 49(5), 577–602 (2002)
Mu’Alem, A., Nisan, N.: Truthful approximation mechanisms for restricted combinatorial auctions. Games and Economic Behavior 64(2), 612–631 (2008)
Nisan, N., Ronen, A.: Algorithmic mechanism design. In: Proceedings of the thirty-first annual ACM Symposium on Theory of Computing (STOC), pp. 129–140 (1999)
Steinberg, A.: A strip-packing algorithm with absolute performance bound 2. SIAM Journal on Computing 26, 401–409 (1997)
Ye, D., Han, X., Zhang, G.: Online multiple-strip packing. Theoretical Computer Science 412(3), 233–239 (2011)
Ye, D., Zhang, G.: Coordination mechanisms for selfish parallel jobs scheduling - (extended abstract). In: Agrawal, M., Cooper, S.B., Li, A. (eds.) TAMC 2012. LNCS, vol. 7287, pp. 225–236. Springer, Heidelberg (2012)
Zhuk, S.: Approximate algorithms to pack rectangles into several strips. Discrete Mathematics and Applications 16(1), 73–85 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ye, D., Zhang, G. (2015). Approximate Truthful Mechanism Design for Two-Dimensional Orthogonal Knapsack Problem. In: Xu, D., Du, D., Du, D. (eds) Computing and Combinatorics. COCOON 2015. Lecture Notes in Computer Science(), vol 9198. Springer, Cham. https://doi.org/10.1007/978-3-319-21398-9_31
Download citation
DOI: https://doi.org/10.1007/978-3-319-21398-9_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21397-2
Online ISBN: 978-3-319-21398-9
eBook Packages: Computer ScienceComputer Science (R0)