Abstract
Triple Graph Grammars (TGGs) are a well-known technique for rule-based specification of bidirectional model transformation. TGG rules build up consistent models simultaneously and are operationalized automatically to forward and backward rules describing single transformation steps in the respective direction. These operational rules, however, are of fixed size and cannot describe transformation steps whose size can only be determined at transformation time for concrete models. In particular, transforming an element to arbitrary many elements depending on the transformation context is not supported. To overcome this limitation, we propose the integration of the multi-amalgamation concept from classical graph transformation into TGGs. Multi-Amalgamation formalizes the combination of multiple transformations sharing a common subpart to a single transformation. For TGGs, this enables repeating certain parts of a forward or backward transformation step in a for each loop-like manner depending on concrete models at transformation time.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a synchronization mechanism. JCSS 34(2–3), 377–408 (1987)
Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and change propagating transformation language. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg (2011)
Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)
Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)
Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: Parallelism and concurrency in high-level replacement systems. MSCS 1(03), 361–404 (1991)
Ehrig, H., Kreowski, H.J.: Parallelism of manipulations in multidimensional information structures. In: Mazurkiewicz, A. (ed.) MFCS 76. LNCS, vol. 45, pp. 285–293. Springer, Heidelberg (1976)
Golas, U., Ehrig, H., Habel, A.: Multi-amalgamation in adhesive categories. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 346–361. Springer, Heidelberg (2010)
Grønmo, R., Krogdahl, S., Møller-Pedersen, B.: A collection operator for graph transformation. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 67–82. Springer, Heidelberg (2009)
Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: an integrated framework for developing well-behaved bidirectional model transformations. In: Alexander, P., Pasarenau, C.S., Hosking, J.G. (eds.) ASE 2011, pp. 480–483 (2011)
Hoffmann, B., Janssens, D., Van Eetvelde, N.: Cloning and expanding graph transformation rules for refactoring. ENTCS 152, 53–67 (2006)
Ikv++: Medini QVT. http://projects.ikv.de/qvt
Leblebici, E., Anjorin, A., Schürr, A.: Tool support for multi-amalgamated triple graph grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 257–265. Springer, Heidelberg (2015)
Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model transformations using alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 297–311. Springer, Heidelberg (2013)
OMG: QVT Specification, V1.1 (2011). http://www.omg.org/spec/QVT/1.1/
Rensink, A.: Nested quantification in graph transformation rules. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 1–13. Springer, Heidelberg (2006)
Rensink, A., Kuperus, J.H.: Repotting the geraniums : on nested graph transformation rules. In: Boronat, A., Heckel, R. (eds.) GT-VMT 2009, ECEASST, vol. 18. EASST (2009)
Schürr, A.: Specification of graph translators with triple graph grammars. In: Tinhofer, G., Schmidt, G., Ernst, W.M. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1994)
Schürr, A.: Programmed graph replacement systems. In: Rozenberg, G. (ed.) Handbook on Graph Grammars: Foundations, pp. 479–546. World Scientific (1997)
Taentzer, G.: Parallel and Distributed Graph Transformation : Formal Description and Application to Communication-Based Systems. Ph.D. thesis (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Leblebici, E., Anjorin, A., Schürr, A., Taentzer, G. (2015). Multi-amalgamated Triple Graph Grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds) Graph Transformation. ICGT 2015. Lecture Notes in Computer Science(), vol 9151. Springer, Cham. https://doi.org/10.1007/978-3-319-21145-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-21145-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-21144-2
Online ISBN: 978-3-319-21145-9
eBook Packages: Computer ScienceComputer Science (R0)