Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-amalgamated Triple Graph Grammars

  • Conference paper
  • First Online:
Graph Transformation (ICGT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9151))

Included in the following conference series:

Abstract

Triple Graph Grammars (TGGs) are a well-known technique for rule-based specification of bidirectional model transformation. TGG rules build up consistent models simultaneously and are operationalized automatically to forward and backward rules describing single transformation steps in the respective direction. These operational rules, however, are of fixed size and cannot describe transformation steps whose size can only be determined at transformation time for concrete models. In particular, transforming an element to arbitrary many elements depending on the transformation context is not supported. To overcome this limitation, we propose the integration of the multi-amalgamation concept from classical graph transformation into TGGs. Multi-Amalgamation formalizes the combination of multiple transformations sharing a common subpart to a single transformation. For TGGs, this enables repeating certain parts of a forward or backward transformation step in a for each loop-like manner depending on concrete models at transformation time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boehm, P., Fonio, H.R., Habel, A.: Amalgamation of graph transformations: a synchronization mechanism. JCSS 34(2–3), 377–408 (1987)

    MathSciNet  Google Scholar 

  2. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: JTL: a bidirectional and change propagating transformation language. In: Malloy, B., Staab, S., van den Brand, M. (eds.) SLE 2010. LNCS, vol. 6563, pp. 183–202. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information preserving bidirectional model transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)

    Google Scholar 

  5. Ehrig, H., Habel, A., Kreowski, H.J., Parisi-Presicce, F.: Parallelism and concurrency in high-level replacement systems. MSCS 1(03), 361–404 (1991)

    MathSciNet  Google Scholar 

  6. Ehrig, H., Kreowski, H.J.: Parallelism of manipulations in multidimensional information structures. In: Mazurkiewicz, A. (ed.) MFCS 76. LNCS, vol. 45, pp. 285–293. Springer, Heidelberg (1976)

    Google Scholar 

  7. Golas, U., Ehrig, H., Habel, A.: Multi-amalgamation in adhesive categories. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 346–361. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Grønmo, R., Krogdahl, S., Møller-Pedersen, B.: A collection operator for graph transformation. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 67–82. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram: an integrated framework for developing well-behaved bidirectional model transformations. In: Alexander, P., Pasarenau, C.S., Hosking, J.G. (eds.) ASE 2011, pp. 480–483 (2011)

    Google Scholar 

  10. Hoffmann, B., Janssens, D., Van Eetvelde, N.: Cloning and expanding graph transformation rules for refactoring. ENTCS 152, 53–67 (2006)

    Google Scholar 

  11. Ikv++: Medini QVT. http://projects.ikv.de/qvt

  12. Leblebici, E., Anjorin, A., Schürr, A.: Tool support for multi-amalgamated triple graph grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds.) ICGT 2015. LNCS, vol. 9151, pp. 257–265. Springer, Heidelberg (2015)

    Google Scholar 

  13. Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model transformations using alloy. In: Cortellessa, V., Varró, D. (eds.) FASE 2013 (ETAPS 2013). LNCS, vol. 7793, pp. 297–311. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. OMG: QVT Specification, V1.1 (2011). http://www.omg.org/spec/QVT/1.1/

  15. Rensink, A.: Nested quantification in graph transformation rules. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 1–13. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Rensink, A., Kuperus, J.H.: Repotting the geraniums : on nested graph transformation rules. In: Boronat, A., Heckel, R. (eds.) GT-VMT 2009, ECEASST, vol. 18. EASST (2009)

    Google Scholar 

  17. Schürr, A.: Specification of graph translators with triple graph grammars. In: Tinhofer, G., Schmidt, G., Ernst, W.M. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1994)

    Google Scholar 

  18. Schürr, A.: Programmed graph replacement systems. In: Rozenberg, G. (ed.) Handbook on Graph Grammars: Foundations, pp. 479–546. World Scientific (1997)

    Google Scholar 

  19. Taentzer, G.: Parallel and Distributed Graph Transformation : Formal Description and Application to Communication-Based Systems. Ph.D. thesis (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhan Leblebici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Leblebici, E., Anjorin, A., Schürr, A., Taentzer, G. (2015). Multi-amalgamated Triple Graph Grammars. In: Parisi-Presicce, F., Westfechtel, B. (eds) Graph Transformation. ICGT 2015. Lecture Notes in Computer Science(), vol 9151. Springer, Cham. https://doi.org/10.1007/978-3-319-21145-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21145-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21144-2

  • Online ISBN: 978-3-319-21145-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics