Abstract
In this work we present so-called generalized Picard iterations (GPI) – a family of iterative processes which allows to solve mildly stiff ODE systems using implicit Runge–Kutta (IRK) methods without storing and inverting Jacobi matrices. The key idea is to solve nonlinear equations arising from the base IRK method by special iterative process based on the idea of artificial time integration. By construction these processes converge for all asymptotically stable linear ODE systems and all A-stable base IRK methods at arbitrary large time steps. The convergence rate is limited by the value of “stiffness ratio”, but not by the value of Lipschitz constant of Jacobian. The computational scheme is well suited for parallelization on systems with shared memory. The presented numerical results exhibit that the proposed GPI methods in case of mildly stiff problems can be more advantageous than traditional explicit RK methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
We use this kind of optimization mostly for simplicity reasons. Of course, in general case this condition does not imply \(|R(z)|<1\ \forall z\in {\varOmega }\), so special care should be taken here.
- 2.
- 3.
References
Faleichik, B., Bondar, I., Byl, V.: Generalized Picard iterations: a class of iterated Runge-Kutta methods for stiff problems. J. Comp. Appl. Math. 262, 37–50 (2013)
Faleichik, B.V.: Explicit implementation of collocation methods for stiff systems with complex spectrum. J. Numer. Anal. 5(1–2), 49–59 (2010)
Hairer, E., Wanner, G.: Solving ordinary differential equations II. In: Hairer, E., Wanner, G. (eds.) Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Heidelberg (1996)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Faleichik, B., Bondar, I. (2015). Matrix-Free Iterative Processes for Implementation of Implicit Runge–Kutta Methods. In: Dimov, I., Faragó, I., Vulkov, L. (eds) Finite Difference Methods,Theory and Applications. FDM 2014. Lecture Notes in Computer Science(), vol 9045. Springer, Cham. https://doi.org/10.1007/978-3-319-20239-6_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-20239-6_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20238-9
Online ISBN: 978-3-319-20239-6
eBook Packages: Computer ScienceComputer Science (R0)