Abstract
Newton’s forward difference equation gives an expression of a function from \({\mathbb {N}}\) to \({\mathbb {Z}}\) in terms of the initial value of the function and the powers of the forward difference operator. An extension of this formula to functions from \(A^*\) to \({\mathbb {Z}}\) was given in 2008 by P. Silva and the author. In this paper, the formula is further extended to functions from \(A^*\) into the free group over \(B\).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Therefore, the notation \(FG(M)\) and \(FG[M]\) refer to the same set, but to different structures: the free group on \(M\) in the first case, the free near semiring on \(M\) in the latter case.
References
Almeida, J.: Finite semigroups and universal algebra. World Scientific Publishing Co., River Edge (1994). Translated from the 1992 Portuguese original and revised by the author
Banaschewski, B., Nelson, E.: On the non-existence of injective near-ring modules. Can. Math. Bull. 20(1), 17–23 (1977)
Berstel, J., Boasson, L., Carton, O., Petazzoni, B., Pin, J.É.: Operations preserving recognizable languages. Theor. Comput. Sci. 354, 405–420 (2006)
Droste, M., Zhang, G.Q.: On transformations of formal power series. Inf. Comput. 184(2), 369–383 (2003)
Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press, New York (1976)
Fröhlich, A.: On groups over a d.g. near-ring. I. Sum constructions and free \(R\)-groups. Q. J. Math. Oxf. Ser. (2) 11, 193–210 (1960)
Fröhlich, A.: On groups over a d.g. near-ring. II. Categories and functors. Q. J. Math. Oxf. Ser. (2) 11, 211–228 (1960)
Kosaraju, S.R.: Regularity preserving functions. SIGACT News 6(2), 16–17 (1974)
Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1997)
Pin, J.É., Sakarovitch, J.: Operations and transductions that preserve rationality. In: Cremers, A.B., Kriegel, H.-P. (eds.) Theoretical Computer Science. LNCS, vol. 145, pp. 617–628. Springer, Heidelberg (1982)
Pin, J.É., Sakarovitch, J.: Une application de la représentation matricielle des transductions. Theor. Comput. Sci. 35, 271–293 (1985)
Pin, J.É., Silva, P.V.: A topological approach to transductions. Theor. Comput. Sci. 340, 443–456 (2005)
Pin, J.É., Silva, P.V.: A Mahler’s theorem for functions from words to integers. In: Albers, S., Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of Computer Science (STACS 2008), pp. 585–596. Internationales Begegnungs- Und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2008)
Pin, J.É., Silva, P.V.: On profinite uniform structures defined by varieties of finite monoids. Int. J. Algebr. Comput. 21, 295–314 (2011)
Pin, J.É., Silva, P.V.: A noncommutative extension of Mahler’s theorem on interpolation series. Eur. J. Comb. 36, 564–578 (2014)
Pin, J.É., Weil, P.: Uniformities on free semigroups. Int. J. Algebr. Comput. 9, 431–453 (1999)
Reutenauer, C., Schützenberger, M.P.: Variétés et fonctions rationnelles. Theor. Comput. Sci. 145(1–2), 229–240 (1995)
Seiferas, J.I., McNaughton, R.: Regularity-preserving relations. Theor. Comp. Sci. 2, 147–154 (1976)
Stearns, R.E., Hartmanis, J.: Regularity preserving modifications of regular expressions. Inf. Control 6, 55–69 (1963)
Acknowlegements
I would like to thank the anonymous referees for their valuable comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Pin, JÉ. (2015). Newton’s Forward Difference Equation for Functions from Words to Words. In: Beckmann, A., Mitrana, V., Soskova, M. (eds) Evolving Computability. CiE 2015. Lecture Notes in Computer Science(), vol 9136. Springer, Cham. https://doi.org/10.1007/978-3-319-20028-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-20028-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-20027-9
Online ISBN: 978-3-319-20028-6
eBook Packages: Computer ScienceComputer Science (R0)