Nothing Special   »   [go: up one dir, main page]

Skip to main content

Newton’s Forward Difference Equation for Functions from Words to Words

  • Conference paper
  • First Online:
Evolving Computability (CiE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9136))

Included in the following conference series:

Abstract

Newton’s forward difference equation gives an expression of a function from \({\mathbb {N}}\) to \({\mathbb {Z}}\) in terms of the initial value of the function and the powers of the forward difference operator. An extension of this formula to functions from \(A^*\) to \({\mathbb {Z}}\) was given in 2008 by P. Silva and the author. In this paper, the formula is further extended to functions from \(A^*\) into the free group over \(B\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Therefore, the notation \(FG(M)\) and \(FG[M]\) refer to the same set, but to different structures: the free group on \(M\) in the first case, the free near semiring on \(M\) in the latter case.

References

  1. Almeida, J.: Finite semigroups and universal algebra. World Scientific Publishing Co., River Edge (1994). Translated from the 1992 Portuguese original and revised by the author

    MATH  Google Scholar 

  2. Banaschewski, B., Nelson, E.: On the non-existence of injective near-ring modules. Can. Math. Bull. 20(1), 17–23 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berstel, J., Boasson, L., Carton, O., Petazzoni, B., Pin, J.É.: Operations preserving recognizable languages. Theor. Comput. Sci. 354, 405–420 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Droste, M., Zhang, G.Q.: On transformations of formal power series. Inf. Comput. 184(2), 369–383 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Eilenberg, S.: Automata, Languages and Machines, vol. B. Academic Press, New York (1976)

    MATH  Google Scholar 

  6. Fröhlich, A.: On groups over a d.g. near-ring. I. Sum constructions and free \(R\)-groups. Q. J. Math. Oxf. Ser. (2) 11, 193–210 (1960)

    Article  MATH  Google Scholar 

  7. Fröhlich, A.: On groups over a d.g. near-ring. II. Categories and functors. Q. J. Math. Oxf. Ser. (2) 11, 211–228 (1960)

    Article  Google Scholar 

  8. Kosaraju, S.R.: Regularity preserving functions. SIGACT News 6(2), 16–17 (1974)

    Article  MathSciNet  Google Scholar 

  9. Lothaire, M.: Combinatorics on Words. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  10. Pin, J.É., Sakarovitch, J.: Operations and transductions that preserve rationality. In: Cremers, A.B., Kriegel, H.-P. (eds.) Theoretical Computer Science. LNCS, vol. 145, pp. 617–628. Springer, Heidelberg (1982)

    Chapter  Google Scholar 

  11. Pin, J.É., Sakarovitch, J.: Une application de la représentation matricielle des transductions. Theor. Comput. Sci. 35, 271–293 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  12. Pin, J.É., Silva, P.V.: A topological approach to transductions. Theor. Comput. Sci. 340, 443–456 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pin, J.É., Silva, P.V.: A Mahler’s theorem for functions from words to integers. In: Albers, S., Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of Computer Science (STACS 2008), pp. 585–596. Internationales Begegnungs- Und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2008)

    Google Scholar 

  14. Pin, J.É., Silva, P.V.: On profinite uniform structures defined by varieties of finite monoids. Int. J. Algebr. Comput. 21, 295–314 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Pin, J.É., Silva, P.V.: A noncommutative extension of Mahler’s theorem on interpolation series. Eur. J. Comb. 36, 564–578 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  16. Pin, J.É., Weil, P.: Uniformities on free semigroups. Int. J. Algebr. Comput. 9, 431–453 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Reutenauer, C., Schützenberger, M.P.: Variétés et fonctions rationnelles. Theor. Comput. Sci. 145(1–2), 229–240 (1995)

    Article  MATH  Google Scholar 

  18. Seiferas, J.I., McNaughton, R.: Regularity-preserving relations. Theor. Comp. Sci. 2, 147–154 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  19. Stearns, R.E., Hartmanis, J.: Regularity preserving modifications of regular expressions. Inf. Control 6, 55–69 (1963)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowlegements

I would like to thank the anonymous referees for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Éric Pin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Pin, JÉ. (2015). Newton’s Forward Difference Equation for Functions from Words to Words. In: Beckmann, A., Mitrana, V., Soskova, M. (eds) Evolving Computability. CiE 2015. Lecture Notes in Computer Science(), vol 9136. Springer, Cham. https://doi.org/10.1007/978-3-319-20028-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20028-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20027-9

  • Online ISBN: 978-3-319-20028-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics